zoukankan      html  css  js  c++  java
  • leetcode62 Unique Paths

     1 """
     2 A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
     3 The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
     4 How many possible unique paths are there?
     5 Above is a 7 x 3 grid. How many possible unique paths are there?
     6 Note: m and n will be at most 100.
     7 Example 1:
     8 Input: m = 3, n = 2
     9 Output: 3
    10 Explanation:
    11 From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
    12 1. Right -> Right -> Down
    13 2. Right -> Down -> Right
    14 3. Down -> Right -> Right
    15 Example 2:
    16 Input: m = 7, n = 3
    17 Output: 28
    18 """
    19 """
    20 看见这个题,我找了个规律,用了递归
    21 但对于数据量大时 会超时
    22 Time Limit Exceeded
    23 Last executed input
    24 23
    25 12
    26 -------------------------------------------------
    27 以下为手动计算
    28 1 1 1 1
    29 1 2 3 4
    30 1 3 6 10
    31 paths[i, j] == paths[i-1, j] + paths[i, j-1]
    32 """
    33 class Solution1:
    34     def uniquePaths(self, m, n):
    35         if m == 1 or n == 1:
    36             return 1
    37         else:
    38             return self.uniquePaths(m-1, n)+self.uniquePaths(m, n-1)
    39 
    40 """
    41 解法二可以用空间换时间,建立一个二维数组
    42 数组的[-1,-1]就是路径数
    43 """
    44 class Solution2:
    45     def uniquePaths(self, m, n):
    46         dp = [[1]*m for _ in range(n)]  #n行 m列的初始化为1的矩阵
    47         for i in range(1, n):
    48             for j in range(1, m):
    49                 dp[i][j] = dp[i-1][j] + dp[i][j-1]
    50         return dp[-1][-1]
    51 
    52 """
    53 解法三用了一定数学基础
    54 设向下走是1,向右走是0,
    55 原问题变成m-1个0与n-1个1有多少种不同的排列,高中数学
    56 思考在 (m-1)+(n-1)个位置里放m-1个0,其余n-1个位置自动为1
    57 就是(m+n-2)!//((m-1)!*(n-1)!)
    58 """
    59 class Solution3:
    60     def uniquePaths(self, m, n):
    61         t = 1
    62         for i in range(1, n): #!!!bug因为(1,n)实际就是(n-1)!
    63             t = t * i
    64         e = 1
    65         for i in range(m, m+n-1):#这里是(m+n-2)!//(m-1)!
    66             e = e * i
    67         return e // t    #这里即为(m+n-2)!//((m-1)!*(n-1)!)
  • 相关阅读:
    酒店预订2
    酒店预订1
    软件2
    酒店预定系统
    系统软件构成
    用例图
    软件构成
    业务用例名
    业务用例结果查询
    业务用例导师交流
  • 原文地址:https://www.cnblogs.com/yawenw/p/12298375.html
Copyright © 2011-2022 走看看