zoukankan      html  css  js  c++  java
  • OpenCV 图像拼接和图像融合技术

    图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要。

    再举一个身边的例子吧,你用你的手机对某一场景拍照,但是你没有办法一次将所有你要拍的景物全部拍下来,所以你对该场景从左往右依次拍了好几张图,来把你要拍的所有景物记录下来。那么我们能不能把这些图像拼接成一个大图呢?我们利用opencv就可以做到图像拼接的效果!

    比如我们有对这两张图进行拼接。

    从上面两张图可以看出,这两张图有比较多的重叠部分,这也是拼接的基本要求。

    那么要实现图像拼接需要那几步呢?简单来说有以下几步:

    1. 对每幅图进行特征点提取
    2. 对对特征点进行匹配
    3. 进行图像配准
    4. 把图像拷贝到另一幅图像的特定位置
    5. 对重叠边界进行特殊处理

    好吧,那就开始正式实现图像配准。

    第一步就是特征点提取。现在CV领域有很多特征点的定义,比如sift、surf、harris角点、ORB都是很有名的特征因子,都可以用来做图像拼接的工作,他们各有优势。本文将使用ORB和SURF进行图像拼接,用其他方法进行拼接也是类似的。

    基于SURF的图像拼接

    用SIFT算法来实现图像拼接是很常用的方法,但是因为SIFT计算量很大,所以在速度要求很高的场合下不再适用。所以,它的改进方法SURF因为在速度方面有了明显的提高(速度是SIFT的3倍),所以在图像拼接领域还是大有作为。虽说SURF精确度和稳定性不及SIFT,但是其综合能力还是优越一些。下面将详细介绍拼接的主要步骤。

    1.特征点提取和匹配

     1 //提取特征点    
     2 SurfFeatureDetector Detector(2000);  
     3 vector<KeyPoint> keyPoint1, keyPoint2;
     4 Detector.detect(image1, keyPoint1);
     5 Detector.detect(image2, keyPoint2);
     6 
     7 //特征点描述,为下边的特征点匹配做准备    
     8 SurfDescriptorExtractor Descriptor;
     9 Mat imageDesc1, imageDesc2;
    10 Descriptor.compute(image1, keyPoint1, imageDesc1);
    11 Descriptor.compute(image2, keyPoint2, imageDesc2);
    12 
    13 FlannBasedMatcher matcher;
    14 vector<vector<DMatch> > matchePoints;
    15 vector<DMatch> GoodMatchePoints;
    16 
    17 vector<Mat> train_desc(1, imageDesc1);
    18 matcher.add(train_desc);
    19 matcher.train();
    20 
    21 matcher.knnMatch(imageDesc2, matchePoints, 2);
    22 cout << "total match points: " << matchePoints.size() << endl;
    23 
    24 // Lowe's algorithm,获取优秀匹配点
    25 for (int i = 0; i < matchePoints.size(); i++)
    26 {
    27     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance)
    28     {
    29         GoodMatchePoints.push_back(matchePoints[i][0]);
    30     }
    31 }
    32 
    33 Mat first_match;
    34 drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
    35 imshow("first_match ", first_match);

    2.图像配准

    这样子我们就可以得到了两幅待拼接图的匹配点集,接下来我们进行图像的配准,即将两张图像转换为同一坐标下,这里我们需要使用findHomography函数来求得变换矩阵。但是需要注意的是,findHomography函数所要用到的点集是Point2f类型的,所有我们需要对我们刚得到的点集GoodMatchePoints再做一次处理,使其转换为Point2f类型的点集。

    1 vector<Point2f> imagePoints1, imagePoints2;
    2 
    3 for (int i = 0; i<GoodMatchePoints.size(); i++)
    4 {
    5     imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);
    6     imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);
    7 }

    这样子,我们就可以拿着imagePoints1, imagePoints2去求变换矩阵了,并且实现图像配准。值得注意的是findHomography函数的参数中我们选泽了CV_RANSAC,这表明我们选择RANSAC算法继续筛选可靠地匹配点,这使得匹配点解更为精确。

     1 //获取图像1到图像2的投影映射矩阵 尺寸为3*3  
     2 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
     3 ////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差  
     4 //Mat   homo=getPerspectiveTransform(imagePoints1,imagePoints2);  
     5 cout << "变换矩阵为:
    " << homo << endl << endl; //输出映射矩阵     
     6 
     7 //图像配准  
     8 Mat imageTransform1, imageTransform2;
     9 warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));
    10 //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
    11 imshow("直接经过透视矩阵变换", imageTransform1);
    12 imwrite("trans1.jpg", imageTransform1);

    3. 图像拷贝

    拷贝的思路很简单,就是将左图直接拷贝到配准图上就可以了。

     1 //创建拼接后的图,需提前计算图的大小
     2 int dst_width = imageTransform1.cols;  //取最右点的长度为拼接图的长度
     3 int dst_height = image02.rows;
     4 
     5 Mat dst(dst_height, dst_width, CV_8UC3);
     6 dst.setTo(0);
     7 
     8 imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));
     9 image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));
    10 
    11 imshow("b_dst", dst);

    4.图像融合(去裂缝处理)

    从上图可以看出,两图的拼接并不自然,原因就在于拼接图的交界处,两图因为光照色泽的原因使得两图交界处的过渡很糟糕,所以需要特定的处理解决这种不自然。这里的处理思路是加权融合,在重叠部分由前一幅图像慢慢过渡到第二幅图像,即将图像的重叠区域的像素值按一定的权值相加合成新的图像。

     1 //优化两图的连接处,使得拼接自然
     2 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
     3 {
     4     int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界  
     5 
     6     double processWidth = img1.cols - start;//重叠区域的宽度  
     7     int rows = dst.rows;
     8     int cols = img1.cols; //注意,是列数*通道数
     9     double alpha = 1;//img1中像素的权重  
    10     for (int i = 0; i < rows; i++)
    11     {
    12         uchar* p = img1.ptr<uchar>(i);  //获取第i行的首地址
    13         uchar* t = trans.ptr<uchar>(i);
    14         uchar* d = dst.ptr<uchar>(i);
    15         for (int j = start; j < cols; j++)
    16         {
    17             //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
    18             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
    19             {
    20                 alpha = 1;
    21             }
    22             else
    23             {
    24                 //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好  
    25                 alpha = (processWidth - (j - start)) / processWidth;
    26             }
    27 
    28             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
    29             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
    30             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);
    31 
    32         }
    33     }
    34 }

    多尝试几张,验证拼接效果

    测试一

    测试二

    测试三

    最后给出完整的SURF算法实现的拼接代码。

      1 #include "highgui/highgui.hpp"    
      2 #include "opencv2/nonfree/nonfree.hpp"    
      3 #include "opencv2/legacy/legacy.hpp"   
      4 #include <iostream>  
      5 
      6 using namespace cv;
      7 using namespace std;
      8 
      9 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst);
     10 
     11 typedef struct
     12 {
     13     Point2f left_top;
     14     Point2f left_bottom;
     15     Point2f right_top;
     16     Point2f right_bottom;
     17 }four_corners_t;
     18 
     19 four_corners_t corners;
     20 
     21 void CalcCorners(const Mat& H, const Mat& src)
     22 {
     23     double v2[] = { 0, 0, 1 };//左上角
     24     double v1[3];//变换后的坐标值
     25     Mat V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
     26     Mat V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
     27 
     28     V1 = H * V2;
     29     //左上角(0,0,1)
     30     cout << "V2: " << V2 << endl;
     31     cout << "V1: " << V1 << endl;
     32     corners.left_top.x = v1[0] / v1[2];
     33     corners.left_top.y = v1[1] / v1[2];
     34 
     35     //左下角(0,src.rows,1)
     36     v2[0] = 0;
     37     v2[1] = src.rows;
     38     v2[2] = 1;
     39     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
     40     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
     41     V1 = H * V2;
     42     corners.left_bottom.x = v1[0] / v1[2];
     43     corners.left_bottom.y = v1[1] / v1[2];
     44 
     45     //右上角(src.cols,0,1)
     46     v2[0] = src.cols;
     47     v2[1] = 0;
     48     v2[2] = 1;
     49     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
     50     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
     51     V1 = H * V2;
     52     corners.right_top.x = v1[0] / v1[2];
     53     corners.right_top.y = v1[1] / v1[2];
     54 
     55     //右下角(src.cols,src.rows,1)
     56     v2[0] = src.cols;
     57     v2[1] = src.rows;
     58     v2[2] = 1;
     59     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
     60     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
     61     V1 = H * V2;
     62     corners.right_bottom.x = v1[0] / v1[2];
     63     corners.right_bottom.y = v1[1] / v1[2];
     64 
     65 }
     66 
     67 int main(int argc, char *argv[])
     68 {
     69     Mat image01 = imread("g5.jpg", 1);    //右图
     70     Mat image02 = imread("g4.jpg", 1);    //左图
     71     imshow("p2", image01);
     72     imshow("p1", image02);
     73 
     74     //灰度图转换  
     75     Mat image1, image2;
     76     cvtColor(image01, image1, CV_RGB2GRAY);
     77     cvtColor(image02, image2, CV_RGB2GRAY);
     78 
     79 
     80     //提取特征点    
     81     SurfFeatureDetector Detector(2000);  
     82     vector<KeyPoint> keyPoint1, keyPoint2;
     83     Detector.detect(image1, keyPoint1);
     84     Detector.detect(image2, keyPoint2);
     85 
     86     //特征点描述,为下边的特征点匹配做准备    
     87     SurfDescriptorExtractor Descriptor;
     88     Mat imageDesc1, imageDesc2;
     89     Descriptor.compute(image1, keyPoint1, imageDesc1);
     90     Descriptor.compute(image2, keyPoint2, imageDesc2);
     91 
     92     FlannBasedMatcher matcher;
     93     vector<vector<DMatch> > matchePoints;
     94     vector<DMatch> GoodMatchePoints;
     95 
     96     vector<Mat> train_desc(1, imageDesc1);
     97     matcher.add(train_desc);
     98     matcher.train();
     99 
    100     matcher.knnMatch(imageDesc2, matchePoints, 2);
    101     cout << "total match points: " << matchePoints.size() << endl;
    102 
    103     // Lowe's algorithm,获取优秀匹配点
    104     for (int i = 0; i < matchePoints.size(); i++)
    105     {
    106         if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance)
    107         {
    108             GoodMatchePoints.push_back(matchePoints[i][0]);
    109         }
    110     }
    111 
    112     Mat first_match;
    113     drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
    114     imshow("first_match ", first_match);
    115 
    116     vector<Point2f> imagePoints1, imagePoints2;
    117 
    118     for (int i = 0; i<GoodMatchePoints.size(); i++)
    119     {
    120         imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);
    121         imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);
    122     }
    123 
    124 
    125 
    126     //获取图像1到图像2的投影映射矩阵 尺寸为3*3  
    127     Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
    128     ////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差  
    129     //Mat   homo=getPerspectiveTransform(imagePoints1,imagePoints2);  
    130     cout << "变换矩阵为:
    " << homo << endl << endl; //输出映射矩阵      
    131 
    132    //计算配准图的四个顶点坐标
    133     CalcCorners(homo, image01);
    134     cout << "left_top:" << corners.left_top << endl;
    135     cout << "left_bottom:" << corners.left_bottom << endl;
    136     cout << "right_top:" << corners.right_top << endl;
    137     cout << "right_bottom:" << corners.right_bottom << endl;
    138 
    139     //图像配准  
    140     Mat imageTransform1, imageTransform2;
    141     warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));
    142     //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
    143     imshow("直接经过透视矩阵变换", imageTransform1);
    144     imwrite("trans1.jpg", imageTransform1);
    145 
    146 
    147     //创建拼接后的图,需提前计算图的大小
    148     int dst_width = imageTransform1.cols;  //取最右点的长度为拼接图的长度
    149     int dst_height = image02.rows;
    150 
    151     Mat dst(dst_height, dst_width, CV_8UC3);
    152     dst.setTo(0);
    153 
    154     imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));
    155     image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));
    156 
    157     imshow("b_dst", dst);
    158 
    159 
    160     OptimizeSeam(image02, imageTransform1, dst);
    161 
    162 
    163     imshow("dst", dst);
    164     imwrite("dst.jpg", dst);
    165 
    166     waitKey();
    167 
    168     return 0;
    169 }
    170 
    171 
    172 //优化两图的连接处,使得拼接自然
    173 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
    174 {
    175     int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界  
    176 
    177     double processWidth = img1.cols - start;//重叠区域的宽度  
    178     int rows = dst.rows;
    179     int cols = img1.cols; //注意,是列数*通道数
    180     double alpha = 1;//img1中像素的权重  
    181     for (int i = 0; i < rows; i++)
    182     {
    183         uchar* p = img1.ptr<uchar>(i);  //获取第i行的首地址
    184         uchar* t = trans.ptr<uchar>(i);
    185         uchar* d = dst.ptr<uchar>(i);
    186         for (int j = start; j < cols; j++)
    187         {
    188             //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
    189             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
    190             {
    191                 alpha = 1;
    192             }
    193             else
    194             {
    195                 //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好  
    196                 alpha = (processWidth - (j - start)) / processWidth;
    197             }
    198 
    199             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
    200             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
    201             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);
    202 
    203         }
    204     }
    205 }

    基于ORB的图像拼接

    利用ORB进行图像拼接的思路跟上面的思路基本一样,只是特征提取和特征点匹配的方式略有差异罢了。这里就不再详细介绍思路了,直接贴代码看效果。

      1 #include "highgui/highgui.hpp"    
      2 #include "opencv2/nonfree/nonfree.hpp"    
      3 #include "opencv2/legacy/legacy.hpp"   
      4 #include <iostream>  
      5 
      6 using namespace cv;
      7 using namespace std;
      8 
      9 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst);
     10 
     11 typedef struct
     12 {
     13     Point2f left_top;
     14     Point2f left_bottom;
     15     Point2f right_top;
     16     Point2f right_bottom;
     17 }four_corners_t;
     18 
     19 four_corners_t corners;
     20 
     21 void CalcCorners(const Mat& H, const Mat& src)
     22 {
     23     double v2[] = { 0, 0, 1 };//左上角
     24     double v1[3];//变换后的坐标值
     25     Mat V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
     26     Mat V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
     27 
     28     V1 = H * V2;
     29     //左上角(0,0,1)
     30     cout << "V2: " << V2 << endl;
     31     cout << "V1: " << V1 << endl;
     32     corners.left_top.x = v1[0] / v1[2];
     33     corners.left_top.y = v1[1] / v1[2];
     34 
     35     //左下角(0,src.rows,1)
     36     v2[0] = 0;
     37     v2[1] = src.rows;
     38     v2[2] = 1;
     39     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
     40     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
     41     V1 = H * V2;
     42     corners.left_bottom.x = v1[0] / v1[2];
     43     corners.left_bottom.y = v1[1] / v1[2];
     44 
     45     //右上角(src.cols,0,1)
     46     v2[0] = src.cols;
     47     v2[1] = 0;
     48     v2[2] = 1;
     49     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
     50     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
     51     V1 = H * V2;
     52     corners.right_top.x = v1[0] / v1[2];
     53     corners.right_top.y = v1[1] / v1[2];
     54 
     55     //右下角(src.cols,src.rows,1)
     56     v2[0] = src.cols;
     57     v2[1] = src.rows;
     58     v2[2] = 1;
     59     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
     60     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
     61     V1 = H * V2;
     62     corners.right_bottom.x = v1[0] / v1[2];
     63     corners.right_bottom.y = v1[1] / v1[2];
     64 
     65 }
     66 
     67 int main(int argc, char *argv[])
     68 {
     69     Mat image01 = imread("t1.jpg", 1);    //右图
     70     Mat image02 = imread("t2.jpg", 1);    //左图
     71     imshow("p2", image01);
     72     imshow("p1", image02);
     73 
     74     //灰度图转换  
     75     Mat image1, image2;
     76     cvtColor(image01, image1, CV_RGB2GRAY);
     77     cvtColor(image02, image2, CV_RGB2GRAY);
     78 
     79 
     80     //提取特征点    
     81     OrbFeatureDetector  surfDetector(3000);  
     82     vector<KeyPoint> keyPoint1, keyPoint2;
     83     surfDetector.detect(image1, keyPoint1);
     84     surfDetector.detect(image2, keyPoint2);
     85 
     86     //特征点描述,为下边的特征点匹配做准备    
     87     OrbDescriptorExtractor  SurfDescriptor;
     88     Mat imageDesc1, imageDesc2;
     89     SurfDescriptor.compute(image1, keyPoint1, imageDesc1);
     90     SurfDescriptor.compute(image2, keyPoint2, imageDesc2);
     91 
     92     flann::Index flannIndex(imageDesc1, flann::LshIndexParams(12, 20, 2), cvflann::FLANN_DIST_HAMMING);
     93 
     94     vector<DMatch> GoodMatchePoints;
     95 
     96     Mat macthIndex(imageDesc2.rows, 2, CV_32SC1), matchDistance(imageDesc2.rows, 2, CV_32FC1);
     97     flannIndex.knnSearch(imageDesc2, macthIndex, matchDistance, 2, flann::SearchParams());
     98 
     99     // Lowe's algorithm,获取优秀匹配点
    100     for (int i = 0; i < matchDistance.rows; i++)
    101     {
    102         if (matchDistance.at<float>(i, 0) < 0.4 * matchDistance.at<float>(i, 1))
    103         {
    104             DMatch dmatches(i, macthIndex.at<int>(i, 0), matchDistance.at<float>(i, 0));
    105             GoodMatchePoints.push_back(dmatches);
    106         }
    107     }
    108 
    109     Mat first_match;
    110     drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
    111     imshow("first_match ", first_match);
    112 
    113     vector<Point2f> imagePoints1, imagePoints2;
    114 
    115     for (int i = 0; i<GoodMatchePoints.size(); i++)
    116     {
    117         imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);
    118         imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);
    119     }
    120 
    121 
    122 
    123     //获取图像1到图像2的投影映射矩阵 尺寸为3*3  
    124     Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
    125     ////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差  
    126     //Mat   homo=getPerspectiveTransform(imagePoints1,imagePoints2);  
    127     cout << "变换矩阵为:
    " << homo << endl << endl; //输出映射矩阵      
    128 
    129                                                 //计算配准图的四个顶点坐标
    130     CalcCorners(homo, image01);
    131     cout << "left_top:" << corners.left_top << endl;
    132     cout << "left_bottom:" << corners.left_bottom << endl;
    133     cout << "right_top:" << corners.right_top << endl;
    134     cout << "right_bottom:" << corners.right_bottom << endl;
    135 
    136     //图像配准  
    137     Mat imageTransform1, imageTransform2;
    138     warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));
    139     //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
    140     imshow("直接经过透视矩阵变换", imageTransform1);
    141     imwrite("trans1.jpg", imageTransform1);
    142 
    143 
    144     //创建拼接后的图,需提前计算图的大小
    145     int dst_width = imageTransform1.cols;  //取最右点的长度为拼接图的长度
    146     int dst_height = image02.rows;
    147 
    148     Mat dst(dst_height, dst_width, CV_8UC3);
    149     dst.setTo(0);
    150 
    151     imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));
    152     image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));
    153 
    154     imshow("b_dst", dst);
    155 
    156 
    157     OptimizeSeam(image02, imageTransform1, dst);
    158 
    159 
    160     imshow("dst", dst);
    161     imwrite("dst.jpg", dst);
    162 
    163     waitKey();
    164 
    165     return 0;
    166 }
    167 
    168 
    169 //优化两图的连接处,使得拼接自然
    170 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
    171 {
    172     int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界  
    173 
    174     double processWidth = img1.cols - start;//重叠区域的宽度  
    175     int rows = dst.rows;
    176     int cols = img1.cols; //注意,是列数*通道数
    177     double alpha = 1;//img1中像素的权重  
    178     for (int i = 0; i < rows; i++)
    179     {
    180         uchar* p = img1.ptr<uchar>(i);  //获取第i行的首地址
    181         uchar* t = trans.ptr<uchar>(i);
    182         uchar* d = dst.ptr<uchar>(i);
    183         for (int j = start; j < cols; j++)
    184         {
    185             //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
    186             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
    187             {
    188                 alpha = 1;
    189             }
    190             else
    191             {
    192                 //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好  
    193                 alpha = (processWidth - (j - start)) / processWidth;
    194             }
    195 
    196             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
    197             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
    198             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);
    199 
    200         }
    201     }
    202 }

    看一看拼接效果,我觉得还是不错的。

    看一下这一组图片,这组图片产生了鬼影,为什么?因为两幅图中的人物走动了啊!所以要做图像拼接,尽量保证使用的是静态图片,不要加入一些动态因素干扰拼接。

    opencv自带的拼接算法stitch

    opencv其实自己就有实现图像拼接的算法,当然效果也是相当好的,但是因为其实现很复杂,而且代码量很庞大,其实在一些小应用下的拼接有点杀鸡用牛刀的感觉。最近在阅读sticth源码时,发现其中有几个很有意思的地方。

    1.opencv stitch选择的特征检测方式

    一直很好奇opencv stitch算法到底选用了哪个算法作为其特征检测方式,是ORB,SIFT还是SURF?读源码终于看到答案。

    1 #ifdef HAVE_OPENCV_NONFREE
    2         stitcher.setFeaturesFinder(new detail::SurfFeaturesFinder());
    3 #else
    4         stitcher.setFeaturesFinder(new detail::OrbFeaturesFinder());
    5 #endif

    在源码createDefault函数中(默认设置),第一选择是SURF,第二选择才是ORB(没有NONFREE模块才选),所以既然大牛们这么选择,必然是经过综合考虑的,所以应该SURF算法在图像拼接有着更优秀的效果。

    2.opencv stitch获取匹配点的方式

    以下代码是opencv stitch源码中的特征点提取部分,作者使用了两次特征点提取的思路:先对图一进行特征点提取和筛选匹配(1->2),再对图二进行特征点的提取和匹配(2->1),这跟我们平时的一次提取的思路不同,这种二次提取的思路可以保证更多的匹配点被选中,匹配点越多,findHomography求出的变换越准确。这个思路值得借鉴。

     1 matches_info.matches.clear();
     2 
     3 Ptr<flann::IndexParams> indexParams = new flann::KDTreeIndexParams();
     4 Ptr<flann::SearchParams> searchParams = new flann::SearchParams();
     5 
     6 if (features2.descriptors.depth() == CV_8U)
     7 {
     8     indexParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);
     9     searchParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);
    10 }
    11 
    12 FlannBasedMatcher matcher(indexParams, searchParams);
    13 vector< vector<DMatch> > pair_matches;
    14 MatchesSet matches;
    15 
    16 // Find 1->2 matches
    17 matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2);
    18 for (size_t i = 0; i < pair_matches.size(); ++i)
    19 {
    20     if (pair_matches[i].size() < 2)
    21         continue;
    22     const DMatch& m0 = pair_matches[i][0];
    23     const DMatch& m1 = pair_matches[i][1];
    24     if (m0.distance < (1.f - match_conf_) * m1.distance)
    25     {
    26         matches_info.matches.push_back(m0);
    27         matches.insert(make_pair(m0.queryIdx, m0.trainIdx));
    28     }
    29 }
    30 LOG("
    1->2 matches: " << matches_info.matches.size() << endl);
    31 
    32 // Find 2->1 matches
    33 pair_matches.clear();
    34 matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2);
    35 for (size_t i = 0; i < pair_matches.size(); ++i)
    36 {
    37     if (pair_matches[i].size() < 2)
    38         continue;
    39     const DMatch& m0 = pair_matches[i][0];
    40     const DMatch& m1 = pair_matches[i][1];
    41     if (m0.distance < (1.f - match_conf_) * m1.distance)
    42         if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
    43             matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
    44 }
    45 LOG("1->2 & 2->1 matches: " << matches_info.matches.size() << endl);

    这里我仿照opencv源码二次提取特征点的思路对我原有拼接代码进行改写,实验证明获取的匹配点确实较一次提取要多。

     1 //提取特征点    
     2 SiftFeatureDetector Detector(1000);  // 海塞矩阵阈值,在这里调整精度,值越大点越少,越精准 
     3 vector<KeyPoint> keyPoint1, keyPoint2;
     4 Detector.detect(image1, keyPoint1);
     5 Detector.detect(image2, keyPoint2);
     6 
     7 //特征点描述,为下边的特征点匹配做准备    
     8 SiftDescriptorExtractor Descriptor;
     9 Mat imageDesc1, imageDesc2;
    10 Descriptor.compute(image1, keyPoint1, imageDesc1);
    11 Descriptor.compute(image2, keyPoint2, imageDesc2);
    12 
    13 FlannBasedMatcher matcher;
    14 vector<vector<DMatch> > matchePoints;
    15 vector<DMatch> GoodMatchePoints;
    16 
    17 MatchesSet matches;
    18 
    19 vector<Mat> train_desc(1, imageDesc1);
    20 matcher.add(train_desc);
    21 matcher.train();
    22 
    23 matcher.knnMatch(imageDesc2, matchePoints, 2);
    24 
    25 // Lowe's algorithm,获取优秀匹配点
    26 for (int i = 0; i < matchePoints.size(); i++)
    27 {
    28     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance)
    29     {
    30         GoodMatchePoints.push_back(matchePoints[i][0]);
    31         matches.insert(make_pair(matchePoints[i][0].queryIdx, matchePoints[i][0].trainIdx));
    32     }
    33 }
    34 cout<<"
    1->2 matches: " << GoodMatchePoints.size() << endl;
    35 
    36 #if 1
    37 
    38 FlannBasedMatcher matcher2;
    39 matchePoints.clear();
    40 vector<Mat> train_desc2(1, imageDesc2);
    41 matcher2.add(train_desc2);
    42 matcher2.train();
    43 
    44 matcher2.knnMatch(imageDesc1, matchePoints, 2);
    45 // Lowe's algorithm,获取优秀匹配点
    46 for (int i = 0; i < matchePoints.size(); i++)
    47 {
    48     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance)
    49     {
    50         if (matches.find(make_pair(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx)) == matches.end())
    51         {
    52             GoodMatchePoints.push_back(DMatch(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx, matchePoints[i][0].distance));
    53         }
    54         
    55     }
    56 }
    57 cout<<"1->2 & 2->1 matches: " << GoodMatchePoints.size() << endl;
    58 #endif

    最后再看一下opencv stitch的拼接效果吧~速度虽然比较慢,但是效果还是很好的。

     1 #include <iostream>
     2 #include <opencv2/core/core.hpp>
     3 #include <opencv2/highgui/highgui.hpp>
     4 #include <opencv2/imgproc/imgproc.hpp>
     5 #include <opencv2/stitching/stitcher.hpp>
     6 using namespace std;
     7 using namespace cv;
     8 bool try_use_gpu = false;
     9 vector<Mat> imgs;
    10 string result_name = "dst1.jpg";
    11 int main(int argc, char * argv[])
    12 {
    13     Mat img1 = imread("34.jpg");
    14     Mat img2 = imread("35.jpg");
    15 
    16     imshow("p1", img1);
    17     imshow("p2", img2);
    18 
    19     if (img1.empty() || img2.empty())
    20     {
    21         cout << "Can't read image" << endl;
    22         return -1;
    23     }
    24     imgs.push_back(img1);
    25     imgs.push_back(img2);
    26 
    27 
    28     Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
    29     // 使用stitch函数进行拼接
    30     Mat pano;
    31     Stitcher::Status status = stitcher.stitch(imgs, pano);
    32     if (status != Stitcher::OK)
    33     {
    34         cout << "Can't stitch images, error code = " << int(status) << endl;
    35         return -1;
    36     }
    37     imwrite(result_name, pano);
    38     Mat pano2 = pano.clone();
    39     // 显示源图像,和结果图像
    40     imshow("全景图像", pano);
    41     if (waitKey() == 27)
    42         return 0;
    43 }

  • 相关阅读:
    hdu6060[贪心+dfs] 2017多校3
    Codeforces 547B. Mike and Feet[单调栈/队列]
    Codeforces 545E. Paths and Trees[最短路+贪心]
    gitignore使用
    es学习
    google浏览器安装jsonview
    sychronized关键字底层详解加锁升级过程
    idea 中 “XXX has broken path” 错误解决
    kafka高并发读写的原因
    window redis版本 安装
  • 原文地址:https://www.cnblogs.com/ybqjymy/p/14177561.html
Copyright © 2011-2022 走看看