FormRequest
FormRequest类是专门用来处理HTML表单的,同时对隐藏的表单处理也很方便。适合用来完成登录操作。
类原型:class scrapy.http.FormRequest(url[, formdata, ...])其构造参数formdata可以是字典形式,也可以是(key, value)元组形式。代表需提交的表单数据。
return FormRequest(url="http://www.example.com/post/action",formdata={'name': 'John Doe', 'age': '27'},callback=self.after_login)
通常网站通过<inputtype=“hidden”>实现对某些表单字段(如数据或是登录界面中的认证令牌等)的预填充,如前知乎的 _xsrf参数。FormRequest类提供了一个类方法from_response。可以处理这种隐藏的表单。
注意html知识补充:所有需要登陆的表单字段都会在html中的form标签中找到,其中需要输入的在form标签的后辈节点input标签中,然后输出的name和value会在input标签中的name属性和value属性中找到。from_response正式利用此到form标签中的后辈节点寻找input标签然后将其name属性为key和value属性为value收集在一起构造(key, value)作为添加进入formdata的值。
from_response(response[, formname=None, formnumber=0, formdata=None, formxpath=None, clickdata=None])
参数说明:
response:一个包含HTML表单的响应页面。
formname(string):如果不为None,表单中的name属性将会被设定为这个值。
formnumber(int):当响应页面中包含多个HTML表单时,本参数用来指定使用第几个表单,第一个表单数字为0。
formdata(dict):本参数用来填充表单中属性的值。如果其中一个属性的值在响应页面中已经被预填充,但formdata中也指定了这个属性的值,将会把预填充的值覆盖掉。
formxpath(string):如果页面中有多个HTML表单,可以用xpath表达式定位页面中的表单,第一个被匹配的将会被操作。
用from_response方法来实现登录功能,示例如下:
import scrapy
class LoginSpider(scrapy.Spider):
name = 'example.com'
start_urls = ['http://www.example.com/users/login.php']
def parse(self, response):
return scrapy.FormRequest.from_response(response,formdata={'username': 'john', 'password': 'secret'},callback=self.after_login)
def after_login(self, response):
# check login succeed before going on
if "authentication failed" in response.body:
self.logger.error("Login failed")
return
BrowserCooCookieJarkiesMiddleware
源码分析:
首先构造方法中有个 self.jars = defaultdict(CookieJar) 这涉及到defaultdict()的使用。
defaultdict()方法和字典的用法大同小异,最大的区别是当defaultdict()可以接受一个函数或者是类作为参数,然后如果只指定defaultdict的一个键,那么该键的值会被默认的参数(如果是函数则为函数返回值,如果为类则为最基础类)填充。看实例:
from collections import defaultdict
a = defaultdict(list)
b = a['frank']
print(b)
输出结果:
[]
因为defaultdict参数为list,则当指定一个键frank的时候,就会设置该frank的值为一个最基础的列表,即[], 将其值赋给b所以b为[] 甚至可以不指定值给b,直接指定一个键,然后该defaultdict就会变成{'frank': []}
的形式。
from collections import defaultdict
a = defaultdict(list)
a['frank']
print(a)
输出结果:
defaultdict(<class 'list'>, {'frank': []})
回到BrowserCookiesMiddleware类,中构造方法,self.jars = defaultdict(CookieJar) 意思即为类的jars变量创建一个CookieJar对象。 回到CookieJar源码,可以看到该类有一个重要的方法,set_cookie(),该防范出入一个cookie对象作为参数,然后将其添加到CookieJar中。于是根据以上我们可以自己设置自己的 BrowserCooCookieJarkiesMiddleware 来为Request设置cookie
import browsercookie
from scrapy.downloadermiddlewares.cookies import
CookiesMiddleware
class MyCookie(CookiesMiddleware):
def __init__(self, debug=False):
super().__init__(debug)
self.load_browser_cookies()
def load_browser_cookies(self):
# 加载Chrome 浏览器中的Cookie
jar = self.jars['chrome']
chrome_cookiejar = browsercookie.chrome()
for cookie in chrome_cookiejar:
jar.set_cookie(cookie)
分析:
- self.load_browser_cookies方法加载浏览器Cookie 。
- 在load_browser_cookies方法中,使用self.jars['chrome']和self.jars['firefox']从默认字典中获得两个CookieJar对象。
- 然后调用browsercookie的chrome和firefox方法,分别获取两个浏览器中的Cookie,将它们填入各自的CookieJar对象中。
Scrapy & bloomfilter
scrapy 自带的去重方案是set()与hashlib.sha1()完成的。源码如下:
def __init__(self, path=None, debug=False):
self.file = None
self.fingerprints = set()
self.logdupes = True
self.debug = debug
self.logger = logging.getLogger(__name__)
if path:
self.file = open(os.path.join(path, 'requests.seen'), 'a+')
self.file.seek(0)
self.fingerprints.update(x.rstrip() for x in self.file)
request_fingerprint方法实现过滤的,将Request指纹添加到set()中。部分源码如下:
def request_fingerprint(request, include_headers=None):
if include_headers:
include_headers = tuple(to_bytes(h.lower())
for h in sorted(include_headers))
cache = _fingerprint_cache.setdefault(request, {})
if include_headers not in cache:
fp = hashlib.sha1()
fp.update(to_bytes(request.method))
fp.update(to_bytes(canonicalize_url(request.url)))
fp.update(request.body or b'')
if include_headers:
for hdr in include_headers:
if hdr in request.headers:
fp.update(hdr)
for v in request.headers.getlist(hdr):
fp.update(v)
cache[include_headers] = fp.hexdigest()
return cache[include_headers]
去重指纹为sha1(method+url+body+header)