zoukankan      html  css  js  c++  java
  • 决策树算法+sklearn库的实现

    直接上代码,和我之前的SVM差不多,都是使用了sklearn库

    from sklearn import tree
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split
    from sklearn.feature_extraction import DictVectorizer
    import numpy as np
    import graphviz
    
    
    def load_data(filename):
        data = np.genfromtxt(filename, delimiter='	')
        x = data[:, 1:]
        y = data[:, 0].astype(int)
        scaler = StandardScaler()  # 标准化函数
        x_std = scaler.fit_transform(x)  # 标准化
        # 将数据划分为训练集和测试集,test_size=.5表示50%的测试集
        x_train, x_test, y_train, y_test = train_test_split(x_std, y, test_size=.5)
        print(len(x_train), len(x_test), len(y_train), len(y_test))
        return x_train, x_test, y_train, y_test
    
    
    def dec_tree(x_train, x_test, y_train, y_test):
        clf = tree.DecisionTreeClassifier()
        clf = clf.fit(x_train, y_train)
    
        # answer = clf.predict(x_test) 预测
        print(clf.score(x_test, y_test))
    
        dot_data = tree.export_graphviz(clf, out_file=None)
        graph = graphviz.Source(dot_data)
        graph.render(r"tree.dot")
    
    
    if __name__ == '__main__':
        dec_tree(*load_data('txt/10/frame505/all.txt'))
    
    

    import graphviz,我导入了graphviz,最后会生成一个dot文件,所以大家如果想要图形化查看dot文件,需要下载graphviz。

    下载好之后,进入到终端,win+R,输入cmd,进入dot所在文件夹,使用

    graphviz -Tpdf ***.dot -o ***.pdf
    

    输入上面命令运行可以在当前文件夹生成pdf。

    好了,这就是决策树的sklearn库实现,不调用库的实现方法后续给出

  • 相关阅读:
    让linux下的eclipse支持GBK编码
    Ubuntu 14.04 安装深度音乐的方法(下载速度极慢未成功)
    wine使用
    Sql语句查看表结构
    读数据库所有表和表结构的sql语句
    详解软件工程之软工文档
    浅谈UML的概念和模型之UML九种图
    HTML5 file api读取文件的MD5码工具
    Sublime Text 3 快捷键汇总
    领域驱动设计系列文章汇总
  • 原文地址:https://www.cnblogs.com/ycycn/p/13872040.html
Copyright © 2011-2022 走看看