zoukankan      html  css  js  c++  java
  • NOIP2015 d2T3 二分+树上前缀和

    NOIP2015 day2 T3

    题目大意:给出一棵树以及若干点对,现要求使树中某一条边的权值变为0,使得最远点对的距离最小。

    sol:
    ​ 用到了很多的思想、技巧和常用结论。
    二分答案(x)(x)为最远点对的距离。
    ​ 由此将问题转化为关于(x)单调的判定性问题(C(x)):是否可以使某一条边的权值变为0,使得所有点对的距离都不超过(x)
    ​ 我们在二分之前倍增预处理出所有点对之间的距离。对于本来就不超过(x)的,不用管;对于原本超过(x)的,我们就必须对这条路径上的某条边进行操作了。
    ​ 是哪条边呢?贪心一下不难得出,应该是所有超过(x)的路径的交集里面最长的那一条边。
    ​ 如何求出它们的交集呢?某UO钩博客上给出了两种解法:

    ​ 1,模拟。把路径求交集的正确姿势当然是两两交起来:显然,树上路径的交集仍然是连续的路径
    如何求两两路径的交集呢?设这两个点对是((a,b))((c,d))
    那么交集路径的两个顶点只可能是:(LCA(a,b),LCA(a,c),LCA(a,d),LCA(b,c),LCA(b,d),LCA(c,d))
    这样,一共就有15种可能。枚举之,找出最大的合法交集即可。

    ​ 2,树上前缀和。一种很朴素的想法,就是统计每条边的被覆盖的次数,覆盖次数等于路径集大小的边的集合就是交集。但我们不可能一条一条边地打标记。我们需要一种高效的维护这个信息的方法。
    ​ 我们回顾一下NOIP 2012借教室。一个序列,给出若干组((l,r,a)​)([l,r]​)区间里的数都减(a​)(a​)为正整数。问按输入顺序操作这些区间,最多可以操作多少,使得序列中不存在负数。答案显然是单调的,即操作的区间越多,约束的条件(不存在负数)越难满足。所以,我们也可以二分答案,转化为判定性问题。如何高效地判定操作完前(i​)个区间是否满足约束呢?奇妙的技巧是维护(a​)的“前缀和”。黄学长这样描述:比如一开始数列(a​)({0,0,0,0,0,0}​),给出区间({3,5,2}​),则将(a_3​)+=(2​)(a_6​)-=(2​),就变成({0,0,2,0,0,-2}​),前缀和变成({0,0,2,2,2,0}​),把前缀和当成元素,这样就实现了对这个区间的操作。降维思想在这里巧妙地运用了。这样,就可以在(O(n)​)的时间复杂度内完成判定,总的复杂度就是(O(nlog n)​)。借教室就是相当于“统计序列中每个元素被减的次数(即对它有影响的(a​)的和)”,所以,原题中就相当于把借教室的方法作树上的拓展。
    ​ 做法如下:对于每个点维护一个间接值(v),我们对这个(v)直接进行加减操作,再维护一个类似于关于(v)的“前缀和”的东西(在树中,更准确的说法应该是“子树和”),就能维护需要的信息了。对于每个点对((a,b)),我们把(v_a)++,(v_b)++,(v_{LCA(a,b)})-=2。然后我们对每个点再弄一个(s),表示这个点到它的父亲这条边被覆盖的次数。则(s_i = v_i + Sigma_{k in son_i}{s_k})。这样,我们就可以按照DFS序维护出(s)了。这是一个非常棒的技巧,需要记忆。

    第一个做法带两个log,第二个做法带一个log。据说还有不带log的线性做法,但leader武爷爷不屑于研究,这个做法也就石沉大海无人知晓了(其实另一篇UO钩博客上有啊。。

    另外注意这个二分由于单调性是递增的,所以按我的惯用写法应该输出右界。
    第一份代码码错了两个地方。详见注释。

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
     #define rep(i,a,b) for (int i = a; i <= b; i++)
     #define dep(i,a,b) for (int i = a; i >= b; i--)
     #define fill(a,x) memset(a, x, sizeof(a))
    
     const int N = 300000 + 5, M = N*2, D = 22;
    
     int n, m, up, cnt = 0, a[M], b[M], fa[N][D], sum[N][D], len[M], v[N], s[N], pre[N], dep[N], dfsid[N];
    
     struct Edge { int to, w, pre; } e[M];
     void ine(int a, int b, int w) {
     	cnt++;
     	e[cnt].to = b, e[cnt].w = w, e[cnt].pre = pre[a];
     	pre[a] = cnt;
     }
     void ine2(int a, int b, int w) {
     	ine(a, b, w);
     	ine(b, a, w);
     }
     #define reg(i,x) for (int i = pre[x]; i; i = e[i].pre)
    
     int read() {
        int x = 0; char ch = getchar();
        while (ch < '0' || ch > '9') ch = getchar();
        while (ch >= '0' && ch <= '9') {
        	x = x*10 + ch - '0';
        	ch = getchar();
        }
        return x;
     }
    
     int cur = 0;
     void change(int x, int dept) {
     	dep[x] = dept;
     	reg(i,x) {
     		int y = e[i].to;
     		if (y == fa[x][0]) continue;
     		fa[y][0] = x;
     		sum[y][0] = e[i].w;
     		change(y, dept + 1);
     	}
     	dfsid[++cur] = x;
     }
    
     void init() {
     	int tmp = 1; up = 0;
     	while ((1<<up) <= n) up++;
     	rep(j,1,up) rep(i,1,n) {  // 一开始把ij循环写反了… 显然不能搞反啊
     		int dad = fa[i][j-1];
     		fa[i][j] = fa[dad][j-1];
     		sum[i][j] = sum[i][j-1] + sum[dad][j-1];
     	}
     }
    
     int lca, tot;
     void query(int a, int b) {
     	tot = 0;
     	if (dep[a] < dep[b]) swap(a, b);
     	int del = dep[a] - dep[b];
     	rep(i,0,up) if ((1<<i)&del) tot += sum[a][i], a = fa[a][i];
     	if (a == b) { lca = a; return; }
     	dep(i,up,0) if (fa[a][i] != fa[b][i]) {
     		tot += (sum[a][i] + sum[b][i]);
     		a = fa[a][i], b = fa[b][i];
     	}
     	if (a != b) { lca = fa[a][0]; tot += (sum[a][0] + sum[b][0]); } else lca = a;
     	return;
     }
    
     int LCA(int a, int b) {
     	query(a, b);
     	return lca;
     }
    
     int get_len(int a, int b) {
     	query(a, b);
     	return tot;
     }
    
     bool judge(int x) {
     	fill(s, 0);
     	int over = 0;
     	rep(i,1,m) if (len[i] > x) {
     		s[a[i]]++; s[b[i]]++;
     		s[LCA(a[i],b[i])] -= 2;
     		over++;
     	}
     	rep(i,1,n) { int t = dfsid[i]; s[fa[t][0]] += s[t]; } // 之前写成了+=v[t]… 前!缀!和!勿理智障如我
     	int dec = 0;
     	rep(i,1,n) if (s[i] == over) dec = max(dec, sum[i][0]);
     	rep(i,1,m) if (len[i] - dec > x) return false;
     	return true;
     }
    
    
    int main()
    {
    	n = read(), m = read();
    	int u, v, w;
    	fill(pre, 0);
    	rep(i,1,2*n) e[i].pre = 0;
    	rep(i,1,n-1) {
    		u = read(), v = read(), w = read();
    		ine2(u, v, w);
    	}
    
        fa[1][0] = 0; sum[1][0] = 0;
    	change(1, 0);
    	init();
    
        int maxl = 0;
    	rep(i,1,m) {
    		a[i] = read(), b[i] = read();
    		len[i] = get_len(a[i], b[i]);
    		maxl = max(maxl, len[i]);
    	}
    
    	int l = -1, r = maxl + 1;
    	while (l + 1 < r) {
    		int mid = (l + r)>>1;
    		if (judge(mid)) r = mid; else l = mid;
    	}
    
    	printf("%d
    ", r);
    
    	return 0;
    }
    
    
  • 相关阅读:
    《GDB常用基本》
    《Linux守护进程》
    <C语言知识点 —— 数组赋值字符串>
    《Linux知识点》
    玩转----select模块操作下拉框-selenium
    玩转----selenium--下拉框select
    玩转----selenium-滚动条的几种方式
    玩转----python-装饰器
    玩转----解决selenium.common.exceptions.InvalidArgumentException: Message: invalid argument: invalid 'expiry'
    玩转----iframe框架怎样来定位,并说明iframe框架中不变和可变的属性分别是什么?多个iframe框架怎么处理?iframe和frame区别:
  • 原文地址:https://www.cnblogs.com/yearwhk/p/5882921.html
Copyright © 2011-2022 走看看