题目描述:
For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight as F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B, inclusive, whose weight is no more than F(A).
输入格式:
The first line has a number T (T <= 10000) , indicating the number of test cases.
For each test case, there are two numbers A and B (0 <= A,B < 109)
For each test case, there are two numbers A and B (0 <= A,B < 109)
输出格式:
For every case,you should output "Case #t: " at first, without quotes. The t is the case number starting from 1. Then output the answer.
输入样例:
3
0 100
1 10
5 100
输出样例:
Case #1: 1
Case #2: 2
Case #3: 13
思路:
设f[i] [j] [k] 表示第i位,首元素为j,当前计算的值为k
转移方程f[i][j][l]+=f[i-1][k][l-(j<<(i-1))];
先预处理,由于多组数据,预处理一下前缀和,查询时先求和一下整数的部分,其余之后再求:
int i,j,p,di=1,ans=1 + (calc(n)<=m); for(i=1;b[i]<=n;i++) for(j=1;j<10;j++) ans+=f[i][j][m]; for(;i;i--) { p=n/b[i-1]%10; for(j=di;j<p;j++)ans+=f[i][j][m]; m-=p<<(i-1),di=0;//求残余的部分,每次减去之前加的m if(m<0)break; } return ans;
代码:
#include<cstdio> #include<iostream> #include<cstdlib> using namespace std; int f[10][10][10500],b[100]; int calc(int x) { int t=1,tot=0; while(x) tot+=(x%10)*t,x/=10,t<<=1; return tot; } void init() { int i,j,k,l; f[0][0][0]=b[0]=1; for(int i=1;i<10;i++) { b[i]=b[i-1]*10; for(j=0;j<10;j++) for(k=0;k<10;k++) for(l=j<<(i-1);l<=10000;l++) f[i][j][l]+=f[i-1][k][l-(j<<(i-1))]; } for( i=1;i<10;i++) for( j=0;j<10;j++) for( k=1;k<=10000;k++) f[i][j][k]+=f[i][j][k-1]; } int sum(int n,int m) { int i,j,p,di=1,ans=1 + (calc(n)<=m); for(i=1;b[i]<=n;i++) for(j=1;j<10;j++) ans+=f[i][j][m]; for(;i;i--) { p=n/b[i-1]%10; for(j=di;j<p;j++)ans+=f[i][j][m]; m-=p<<(i-1),di=0; if(m<0)break; } return ans; } int main() { int T,i,a,bb; init(); scanf("%d",&T); for(i=1;i<=T;i++){ scanf("%d%d",&a,&bb); printf("Case #%d: %d ",i,sum(bb,calc(a))); } return 0; }