题目描述:
For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight as F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B, inclusive, whose weight is no more than F(A).
输入格式:
The first line has a number T (T <= 10000) , indicating the number of test cases.
For each test case, there are two numbers A and B (0 <= A,B < 109)
For each test case, there are two numbers A and B (0 <= A,B < 109)
输出格式:
For every case,you should output "Case #t: " at first, without quotes. The t is the case number starting from 1. Then output the answer.
输入样例:
3
0 100
1 10
5 100
输出样例:
Case #1: 1
Case #2: 2
Case #3: 13
思路:
设f[i] [j] [k] 表示第i位,首元素为j,当前计算的值为k
转移方程f[i][j][l]+=f[i-1][k][l-(j<<(i-1))];
先预处理,由于多组数据,预处理一下前缀和,查询时先求和一下整数的部分,其余之后再求:
int i,j,p,di=1,ans=1 + (calc(n)<=m);
for(i=1;b[i]<=n;i++)
for(j=1;j<10;j++)
ans+=f[i][j][m];
for(;i;i--)
{
p=n/b[i-1]%10;
for(j=di;j<p;j++)ans+=f[i][j][m];
m-=p<<(i-1),di=0;//求残余的部分,每次减去之前加的m
if(m<0)break;
}
return ans;
代码:
#include<cstdio>
#include<iostream>
#include<cstdlib>
using namespace std;
int f[10][10][10500],b[100];
int calc(int x)
{
int t=1,tot=0;
while(x) tot+=(x%10)*t,x/=10,t<<=1;
return tot;
}
void init()
{
int i,j,k,l;
f[0][0][0]=b[0]=1;
for(int i=1;i<10;i++)
{
b[i]=b[i-1]*10;
for(j=0;j<10;j++)
for(k=0;k<10;k++)
for(l=j<<(i-1);l<=10000;l++)
f[i][j][l]+=f[i-1][k][l-(j<<(i-1))];
}
for( i=1;i<10;i++)
for( j=0;j<10;j++)
for( k=1;k<=10000;k++)
f[i][j][k]+=f[i][j][k-1];
}
int sum(int n,int m)
{
int i,j,p,di=1,ans=1 + (calc(n)<=m);
for(i=1;b[i]<=n;i++)
for(j=1;j<10;j++)
ans+=f[i][j][m];
for(;i;i--)
{
p=n/b[i-1]%10;
for(j=di;j<p;j++)ans+=f[i][j][m];
m-=p<<(i-1),di=0;
if(m<0)break;
}
return ans;
}
int main()
{
int T,i,a,bb;
init();
scanf("%d",&T);
for(i=1;i<=T;i++){
scanf("%d%d",&a,&bb);
printf("Case #%d: %d
",i,sum(bb,calc(a)));
}
return 0;
}