zoukankan      html  css  js  c++  java
  • 透彻网络流-wfx-最大流

    前提:

    我们想象一下自来水厂到你家的水管网是一个复杂的有向图,每一节水管都有一个最大承载流量。自来水厂不放水,你家就断水了。但是就算自来水厂拼命的往管网里面注水,你家收到的水流量也是上限(毕竟每根水管承载量有限)。你想知道你能够拿到多少水,这就是一种网络流问题。

    在网上找了很久资料,虽然讲解网络流的资料很多但是浅显易懂的很少(可能是我太蒻了吧),写这篇文章只希望点进来的人都能学会网络流(都能点赞)

    首先

    最大流:

    何为最大流 简单来说就是水流从一个源点s通过很多路径,经过很多点,到达汇点t,问你最多能有多少水能够到达t点。

    结合图示理解: 从s到t经过若干个点,若干条边,每一条边的水流都不能超过边权值(可以小于等于但不能大于),所以该图的最大流就是10+22+45=77。 如果你还是不能理解,我们就换一种说法,假设s城有inf个人想去t城,但是从s到t要经过一些城市才能到达,(以上图为例)其中s到3城的火车票还剩10张,3到t的火车票还剩15张,其他路以此类推,问最终最多能有多少人能到达t城?

    EK:

    Edmond—Karp

    增广路:

    增广路: 增广路是指从s到t的一条路,流过这条路,使得当前的流(可以到达t的人)可以增加。 那么求最大流问题可以转换为不断求解增广路的问题,并且,显然当图中不存在增广路时就达到了最大流。 具体怎么操作呢? 其实很简单,直接从s到t广搜即可,从s开始不断向外广搜,通过权值大于0的边(因为后面会减边权值,所以可能存在边权为0的边),直到找到t为止,然后找到该路径上边权最小的边,记为mi,然后最大流加mi,然后把该路径上的每一条边的边权减去mi,直到找不到一条增广路(从s到t的一条路径)为止。(为什么要用mi呢?你要争取在这条路上多走更多人,但又不能让人停在某个城市)

    代码:

    #include<cstdio>
    #include<cstdlib>
    #include<queue>
    #include<iostream>
    using namespace std;
    const int inf = 2147483647;
    const int MAXN = 100100;
    int head[MAXN],cnt = 1,low[MAXN],pre[MAXN],n,m,S,T;
    int maxflow;
    bool v[MAXN];
    inline int read(){
    	int res = 0; char ch = getchar(); bool bo = false;
    	while(ch < '0' || ch > '9') bo = (ch == '-'), ch = getchar();
    	while(ch >= '0' && ch <= '9') res = (res << 1) + (res << 3) + (ch ^ 48), ch = getchar();
    	return bo ? -res : res;
    }
    struct node{int nxt,to,dis;}e[MAXN<<1];
    void add(int from,int to,int dis)
    {
    	e[++cnt]= (node){head[from],to,dis};
    	head[from]=cnt;
    }
    void EK()
    {
    	int x=T;
    	while(x!=S)
    	{
    		int i=pre[x];
    		e[i].dis-=low[T];
    		e[i^1].dis+=low[T];
    		x=e[i^1].to;
    	}
    	maxflow += low[T];
    }
    queue <int> q;
    bool bfs()
    {
    	for(int i=1;i<=n;i++)v[i]=0;
    	while(q.size()) q.pop();
    	v[S]=1;
    	q.push(S);
    	low[S]=inf;
    	while(q.size())
    	{
    		int x=q.front();
    		q.pop();
    		for(int i=head[x];i;i=e[i].nxt)
    		{
    			if(e[i].dis > 0)
    			{
    				int y=e[i].to;
    				if(v[y])continue;
    				low[y]=min(low[x],e[i].dis);
    				pre[y]=i;
    				q.push(y);v[y]=1;
    				if(y==T)return true;
    			}
    		}
    	}
    	return false;
    }
    int main()
    {
    	n=read();m=read();S=read();T=read();
    	int x,y,c;
    	for(int i=1;i<=m;i++)
    	{
    		x=read();y=read();c=read();
    		add(x,y,c); add(y,x,0);
    	}
    	while(bfs()) EK();
    	printf("%d
    ",maxflow);
    	return 0;
    }
    

      

    Dinic:

    Dinic算法分为两个步骤:

    1. bfs分层(在EK中bfs是用于寻找增广路的)
    2. dfs增广(dfs?EK中貌似没有这玩意啊,确定能高效?)
    3. 咦!刚才不是说两个步骤吗?重复执行1.2.直到图中无增广路为止

    什么意思呢?

    与EK一样,我们仍要通过bfs来判断图中是否还存在增广路,但是DInic算法里的bfs略有不同,这次,我们不用记录路径,而是给每一个点分层,对于任意点i,从s到i每多走过一个点,就让层数多一。

    其实每次只找层数大一的,认为找最短增广路,为神魔呢:

    有了分层,我们就不会选s->1->2->4->5->3->t了

    刚才说了的,分完层下一步是dfs增广。

    在Dinic中,我们找增广路是用深搜:

    代码:

    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<queue>
    #include<cstring>
    using namespace std;
    const int N = 100100;
    const int inf = 214748347;
    int cnt=1,head[10010],d[10010],n,m,s,t,maxflow;
    bool v[N];
    struct node{int nxt,to,dis;}e[N<<1];
    void add(int from,int to,int dis)
    {
    	e[++cnt] = (node){head[from],to,dis};
    	head[from]=cnt;
    }
    
    queue <int> q;
    bool bfs()
    {
    	memset(d,0,sizeof d);
    	while(q.size())q.pop();
    	q.push(s);
    	d[s]=1;
    	while(q.size())
    	{
    		int x=q.front();q.pop();
    		for(int i=head[x];i;i=e[i].nxt)
    		{
    			int y=e[i].to;
    			if(e[i].dis && !d[y])
    			{
    				q.push(y);
    				d[y]=d[x]+1;
    				if(e[i].to==t)return 1;
    			}
    		}
    	}
    	return 0;
    }
    int dinic(int x,int flow)
    {
    	if(x==t)return flow;
    	int rest=flow,k;
    	for(int i=head[x];i&&rest;i=e[i].nxt)
    	{
    		int y=e[i].to;
    		if(e[i].dis&&d[y]==d[x]+1)
    		{
    			k=dinic(y,min(rest,e[i].dis));
    			if(!k) d[y]=0;
    			e[i].dis-=k;
    			e[i^1].dis+=k;
    			rest-=k;
    		}
    	}
    	return flow-rest;
    }
    int main()
    {
    	scanf("%d%d%d%d",&n,&m,&s,&t);
    	int x,y,c;
    	for(int i=1;i<=m;i++)
    	{
    		scanf("%d%d%d",&x,&y,&c);
    		add(x,y,c);add(y,x,0);
    	}
    	int flow=0;
    	while(bfs())
    	{
    		while(flow=dinic(s,inf)) maxflow+=flow;
    	}
    	printf("%d
    ",maxflow);
    	return 0;
    }
    

      

    还有一种超强的优化:当前弧(边)优化:

    我们定义一个数组cur记录当前边(弧)(功能类比邻接表中的head数组,只是会随着dfs的进行而修改),

    每次我们找过某条边(弧)时,修改cur数组,改成该边(弧)的编号,

    那么下次到达该点时,会直接从cur对应的边开始(也就是说从head到cur中间的那一些边(弧)我们就不走了)。

    有点抽象啊,感觉并不能加快,然而实际上确实快了很多。

    代码:

    bool bfs()
    {
    	for(int i=1;i<=n;i++)
    	{
    		cur[i]=head[i];///////////////////只修改这几处,让你的代码飞快,相当于节省了dfs
              d[i]=0;///////中的链式前向星,因为head【】的边有的已经在前面使用 } while(q.size())q.pop(); q.push(s); d[s]=1; while(q.size()) { int x=q.front();q.pop(); for(int i=head[x];i;i=e[i].nxt) { int y=e[i].to; if(e[i].dis && !d[y]) { q.push(y); d[y]=d[x]+1; if(e[i].to==t)return 1; } } } return 0; } int dinic(int x,int flow) { if(x==t)return flow; int rest=flow,k; for(int i=cur[x];i&&rest;i=e[i].nxt)////////////////// { cur[x]=i;///////////////// int y=e[i].to; if(e[i].dis&&d[y]==d[x]+1) { k=dinic(y,min(rest,e[i].dis)); if(!k) d[y]=0; e[i].dis-=k; e[i^1].dis+=k; rest-=k; } } return flow-rest; }

      

    感谢__wfx 一下午的讲解,自己明白了很多

    !!!!!!!!!!!!!!!!!!

    缘来是你

  • 相关阅读:
    使用AWS、Docker与Rancher提供弹性的生产级服务
    如何用微服务重构应用程序
    Prometheus入门
    Docker监控:最佳实践以及cAdvisor和Prometheus监控工具的对比
    前后端分离session不一致问题
    Eclipse整合SSM框架+AOP+全局异常处理
    SSM配置基于注解AOP
    有关Linux
    Tomcat下配置javaWeb访问路径-Linux
    Linux下如何安装Nginx
  • 原文地址:https://www.cnblogs.com/yelir/p/11520216.html
Copyright © 2011-2022 走看看