zoukankan      html  css  js  c++  java
  • matrix theory_basic results and techniques_exercise_1.2.2,1.2.3

    Evaluate the determinant
    $$
    \begin{vmatrix}
    1+x&1&1\\
    1&1+y&1\\
    1&1&1+z\\
    \end{vmatrix}
    $$


    Answer:将矩阵的第一行乘以-1加到第二行,得到
    $$
    \begin{vmatrix}
    1+x&1&1\\
    -x&y&0\\
    1&1&1+z\\
    \end{vmatrix}
    $$
    将矩阵的第一行乘以-1加到第三行,得到
    $$
    \begin{vmatrix}
    1+x&1&1\\
    -x&y&0\\
    -x&0&z\\
    \end{vmatrix}=xyz+xy+yz+zx
    $$

    Show the $3\times 3$ Vandermonde determinant identity

    $$
    \begin{vmatrix}
    1&1&1\\
    a_1&a_2&a_3\\
    a_1^2&a_2^2&a_3^2\\
    \end{vmatrix}=(a_1-a_2)(a_2-a_3)(a_3-a_1)
    $$

    我们先看该矩阵的转置:
    $$
    \begin{vmatrix}
    1&a_1&a_1^2\\
    1&a_2&a_2^2\\
    1&a_3&a_3^2\\
    \end{vmatrix}
    $$
    然后第一行乘以-1加到第二行上,将第一行乘以-1加到第三行上:

    $$
    \begin{vmatrix}
    1&a_1&a_1^2\\
    0&a_2-a_1&a_2^2-a_1^2\\
    0&a_3-a_1&a_3^2-a_1^2\\
    \end{vmatrix}=(a_2-a_1)(a_3^2-a_1^2)-(a_3-a_1)(a_2^2-a_1^2)=(a_1-a_2)(a_3-a_1)(a_2-a_3)
    $$
    And evaluate the determinant
    $$
    \begin{vmatrix}
    1&a&a^2-bc\\
    1&b&b^2-ca\\
    1&c&c^2-ab\\
    \end{vmatrix}
    $$


    Answer:将矩阵的第一行乘以-1加到第二行上,将矩阵的第二行乘以-1加到第三行上,将矩阵的第三行乘以-1加到第一行上:

    $$
    \begin{vmatrix}
    0&a-c&(a-c)(a+b+c)\\
    0&b-a&(b-a)(a+b+c)\\
    0&c-b&(c-b)(a+b+c)\\
    \end{vmatrix}
    $$
    可见,最后的结果是0.

  • 相关阅读:
    spring 心跳更新
    eclipse 控制台输出太多,显示不完整
    String
    iOS 开发之如何生成SDK(2)-----生成framework
    如何防止自己的APP被Hook
    JavaAPI类
    Java面向对象三大特性—封装
    Java类与对象
    Java基础易错点1
    Java数组反转及二维数组
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827574.html
Copyright © 2011-2022 走看看