zoukankan      html  css  js  c++  java
  • Elementary Methods in Number Theory Exercise 1.4.11

    The prime numbers $p$ and $q$ are called twin primes if $|p-q|=2$.Let $p$ and $q$ be primes.Prove that $pq+1$ is a square if and only if $p$ and $q$ are twin primes.


    Proof:$\Leftarrow:$When $p$ and $q$ are twin primes,without the loss of generality,let $p-q=2$.Then
    \begin{equation}
    pq+1=q(q+2)+1=q^2+2q+1=(q+1)^2
    \end{equation}
    $\Rightarrow:$Without the loss of generality,let $p\geq q$.
    \begin{equation}
    pq+1=t^2(t\in\mathbf{N}^{+})
    \end{equation}
    So
    \begin{equation}
    pq=(t+1)(t-1)
    \end{equation}
    So
    \begin{align*}
    \begin{cases}
    p=t+1\\
    q=t-1\\
    \end{cases}
    \end{align*}(In this case,$p-q=2$)
    or
    \begin{align*}
    \begin{cases}
    pq=t+1\\
    1=t-1\\
    \end{cases}
    \end{align*}(In this case,$t=2$,then $pq=3$,so $p=3,q=1$,then $p-q=2$)

  • 相关阅读:
    配置步骤
    swap区
    Oracle的left join中on和where的区别
    drop与truncate
    关于trace
    oracle执行计划连接方式
    oracle系统结构
    查询存档
    oracle统计信息
    分区索引
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827613.html
Copyright © 2011-2022 走看看