zoukankan      html  css  js  c++  java
  • 数论概论(Joseph H.Silverman) 习题 5.3,Elementary methods in number theory exercise 1.3.23

    1. 设$b=r_0$.$r_1,r_2,\cdots$是将欧几里德算法应用于$a$与$b$得到的相继余数,证明每两步会缩小余数至少一半,换句话说,验证
    \begin{equation}
    r_{i+2}<\frac{1}{2}r_i,i=0,1,2,\cdots
    \end{equation}由此证明欧几里德算法在至多$2\log_2(b)$步终止.


    证明是很容易的.

    2.(Lame's theorem)Let $a$ and $b$ be positive integers with $a>b$.The length of the Euclidean algorithm for $a$ and $b$ ,denoted by $E(a,b)$,is the number of divisions required to find the greatest common divisor of $a$ and $b$.Prove that

    \begin{equation}
    E(a,b)\leq \log_a b+1
    \end{equation}
    where $a=\frac{1+\sqrt{5}}{2}$.

    Proof:
    \begin{equation}
    \log_ab+1=a\log_ab
    \end{equation}And it is easy to verify that

    \begin{equation}
    a\log_a b<2\log_2(b)
    \end{equation}
    So according to 1,the theorem holds.

  • 相关阅读:
    杭电2081
    杭电2083
    杭电2084
    3/5/2014 cfb 小心
    116
    uva10003
    10815
    127
    674
    uva 13598
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827622.html
Copyright © 2011-2022 走看看