zoukankan      html  css  js  c++  java
  • Elementary Methods in Number Theory Exercise 1.3.17, 1.3.18, 1.3.19, 1.3.20, 1.3.21

    We define a sequence of integers as follows:
    \begin{equation}
    f_0=0
    \end{equation}
    \begin{equation}
    f_1=1
    \end{equation}
    \begin{equation}
    f_n=f_{n-1}+f_{n-2}~~\mbox{for} ~~n\geq 2
    \end{equation}

    1.Prove that
    \begin{equation}\label{eq:987654}
    f_1+f_2+\cdots+f_n=f_{n+2}-1
    \end{equation}for all positive integers $n$.

    Proof:When $n=1$,
    \begin{equation}
    f_1=f_3-1
    \end{equation}
    Suppose when $n=k$,
    \begin{equation}
    f_1+f_2+\cdots+f_k=f_{k+2}-1
    \end{equation}
    Then
    \begin{equation}
    f_1+f_2+\cdots+f_k+f_{k+1}=f_{k+2}+f_{k+1}-1=f_{k+3}-1
    \end{equation}.Done.


    2.Prove that
    \begin{equation}
    f_{n+1}f_{n-1}-f_n^2=(-1)^n
    \end{equation}for all positive integers $n$.


    Proof:We just need to prove that
    \begin{equation}
    f_nf_{n-1}+f_{n-1}^2-f_n^2=(-1)^n
    \end{equation}

    When $n=1$,
    \begin{equation}
    f_1f_0+f_0^2-f_1^2=-1
    \end{equation}
    Suppose when $n=k$,
    \begin{equation}
    f_kf_{k-1}+f_{k-1}^2-f_k^2=(-1)^k
    \end{equation}
    Then
    \begin{equation}
    f_{k+1}f_k+f_k^2-f_{k+1}^2=(f_k+f_{k-1})f_k+f_k^2-(f_k+f_{k-1})^2=f_k^2-f_kf_{k-1}-f_{k-1}^2=(-1)^{k+1}
    \end{equation}Done.

    3.Prove that
    \begin{equation}
    f_n=f_{k+1}f_{n-k}+f_kf_{n-k-1}
    \end{equation}for all $k=0,1,\cdots,n$.

    Proof:When $k=0$,
    \begin{equation}
    f_n=f_1f_n+f_0f_{n-1}
    \end{equation}
    Suppose when $k=t$,the theorem holds,that is,

    \begin{equation}
    f_n=f_{t+1}f_{n-t}+f_tf_{n-t-1}
    \end{equation}
    That is ,

    \begin{equation}
    f_n=f_{t+1}(f_{n-t-1}+f_{n-t-2})+f_tf_{n-t-1}
    \end{equation}

    Then
    \begin{equation}
    f_{t+2}f_{n-t-1}+f_{t+1}f_{n-t-2}=(f_{t+1}+f_t)f_{n-t-1}+f_{t+1}f_{n-t-2}=f_n
    \end{equation}

    Done.

    3.Prove that $f_n$ divides $f_{ln}$ for all positive integers $l$.

    Proof:According to 3,

    \begin{equation}
    f_{ln}=f_{n}f_{(l-1)n+1}+f_{(l-1)n}f_{n-(l-1)n-1}
    \end{equation}Done(Why?)


    4.Prove that
    \begin{equation}
    \begin{pmatrix}
    f_{n+1}&f_n\\
    f_n&f_{n-1}
    \end{pmatrix}=\begin{pmatrix}
    1&1\\
    1&0\\
    \end{pmatrix}^n
    \end{equation}

    Proof:Prove it by induction.When $n=1$,
    \begin{equation}
    \begin{pmatrix}
    f_2&f_1\\
    f_1&f_0\\
    \end{pmatrix}=\begin{pmatrix}
    1&1\\
    1&0\\
    \end{pmatrix}
    \end{equation}
    Suppose when $n=k$,
    \begin{equation}
    \begin{pmatrix}
    f_{k+1}&f_k\\
    f_k&f_{k-1}\\
    \end{pmatrix}=\begin{pmatrix}
    1&1\\
    1&0
    \end{pmatrix}^k
    \end{equation}
    Then in case of $n=k+1$,
    \begin{equation}
    \begin{pmatrix}
    f_{k+1}&f_k\\
    f_k&f_{k-1}
    \end{pmatrix}\begin{pmatrix}
    1&1\\
    1&0
    \end{pmatrix}=\begin{pmatrix}
    f_{k+1}+f_k&f_{k+1}\\
    f_k+f_{k-1}&f_k\\
    \end{pmatrix}=\begin{pmatrix}
    f_{k+2}&f_{k+1}\\
    f_{k+1}&f_k
    \end{pmatrix}
    \end{equation}
    Done.

    Remark1:4$\Rightarrow$ 2

  • 相关阅读:
    基础数据类型:列表
    基础数据类型(数字、布尔值、字符串)
    深浅copy
    集合
    逻辑运算
    poj 2287 Tian Ji -- The Horse Racing(贪心)
    hdu 1547 Bubble Shooter(深搜)
    hdu 1242 Rescue
    hdu 1175 连连看(深搜)
    hdu 2298 Toxophily(数学题)
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827623.html
Copyright © 2011-2022 走看看