zoukankan      html  css  js  c++  java
  • Elementary Methods in Number Theory Exercise 1.2.14

    Let $a,b,c,d$ be integers such that $ad-bc=1$.For integers $u$ and $v$,define
    \begin{equation}
    u'=au+bv
    \end{equation}
    \begin{equation}
    v'=cu+dv
    \end{equation}
    Prove that $(u,v)=(u',v')$.


    Proof:
    \begin{equation}
    u'c=acu+bcv
    \end{equation}
    \begin{equation}
    v'a=acu+adv
    \end{equation}
    So
    \begin{equation}
    u'c-v'a=v(bc-ad)
    \end{equation}
    So
    \begin{equation}
    v=v'a-u'c
    \end{equation}
    \begin{equation}
    u=du'-bv'
    \end{equation}
    So
    \begin{equation}
    (u,v)\geq (u',v')
    \end{equation}and
    \begin{equation}
    (u',v')\geq (u,v)
    \end{equation}
    So
    \begin{equation}
    (u,v)=(u',v')
    \end{equation}$\Box$


    Remark 1:\begin{equation}
    \begin{vmatrix}
    a&b\\
    c&d\\
    \end{vmatrix}=1
    \end{equation}

    \begin{equation}
    \begin{pmatrix}
    u'\\
    v'
    \end{pmatrix}=\begin{pmatrix}
    a&b\\
    c&d\\
    \end{pmatrix}\begin{pmatrix}
    u\\
    v\\
    \end{pmatrix}
    \end{equation}


    I think there is some relation to geometric meaning(Liear transformation).But I can't find it at present,maybe it is related to this post.


    2.Maybe it is also related to complex numbers.For

    \begin{equation}
    (a+bi)(-c+di)=(-ac-bd)+(ad-bc)i
    \end{equation}

  • 相关阅读:
    提升request模块的效率--线程池
    selenium的用法
    SVN 常用命令
    SVN 常见问题及解决方法
    Makefile 详解
    开心一刻(一)
    Vim配置及其他注意事项
    彩虹表
    C++学习之STL(二)String
    C++学习之STL(一)vector
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827630.html
Copyright © 2011-2022 走看看