zoukankan      html  css  js  c++  java
  • 「陶哲軒實分析」 習題 3.4.10

    假设I和J是两个集合,并且对于每个$\alpha\in I\bigcup J$,$A_{\alpha}$是一个集合.证明$$(\bigcup_{\alpha\in I}A_{\alpha})\bigcup(\bigcup_{\alpha\in J}A_{\alpha})=(\bigcup_{\alpha\in I\bigcup J}A_{\alpha})$$
    如果I和J是非空的,则$$(\bigcap_{\alpha\in I}A_{\alpha})\bigcap(\bigcap_{\alpha\in J}A_{\alpha})=(\bigcap_{\alpha\in I\bigcup J}A_{\alpha})$$

    证明:前面一条略证.我要证后一条:$\forall x\in(\bigcap_{\alpha\in I}A_{\alpha})\bigcap(\bigcap_{\alpha\in J}A_{\alpha})$,可知$x\in\bigcap_{\alpha\in I}A_{\alpha}$且$x\in\bigcap_{\alpha\in J}A_{\alpha}$.可知,对于任意$\alpha\in I,x\in A_{\alpha}$,并且对于任意$\alpha\in J,x\in A_{\alpha}$,即,对于任意$\alpha\in I\bigcup J$,$x\in A_{\alpha}$,也就是$x\in(\bigcap_{\alpha\in I\bigcup J}A_{\alpha})$易得逆推照样成立.故命题成立.

  • 相关阅读:
    AD预测论文研读系列2
    hdu 5795
    sg函数的应用
    二分查找
    快速幂
    筛选法素数打表
    多校hdu-5775 Bubble sort(线段树)
    多校hdu5754(博弈)
    多校hdu5738 寻找
    多校hdu5726 线段树+预处理
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827666.html
Copyright © 2011-2022 走看看