zoukankan      html  css  js  c++  java
  • 数学分析_Tom M.Apostol 定理7.6 用阿贝尔变换证明RiemannStieltjes积分的分部积分公式

    如果$f\in R(\alpha)[a,b]$,则有$\alpha\in R(f)[a,b]$,而且$$\int_a^bfd\alpha+\int_a^b\alpha df=f(b)\alpha(b)-f(a)\alpha(a)$$.
     
     
    现在用阿贝尔变换证明它:$f\in R(\alpha)[a,b]$说明存在实数$L$,使得对于任意给定的正实数$\varepsilon$,都存在$[a,b]$的分割$P$,使得对于$P$的任何加细$P'$,都有
    $$|S(P',\alpha,f)-L|<\varepsilon$$
    $$|\sum_{i=0}^{n-1}f(x_{ti})(\alpha(x_{i+1})-\alpha(x_i))-L|<\varepsilon$$
    其中$x_{ti}$是在区间$[x_i,x_{i+1}]$上的任意一个数,$\{x_0,\cdots,x_n\}=P'$.根据阿贝尔变换,
    $$\sum_{i=0}^{n-1}f(x_{ti})(\alpha(x_{i+1})-\alpha(x_i))=f(x_{t,n-1})[\alpha(x_n)-\alpha(x_0)]-\sum_{i=0}^{n-2}(\alpha(x_{i+1})-\alpha(x_0))(f(x_{t,i+1})-f(x_{ti}))$$
    $$\sum_{i=0}^{n-1}f(x_{ti})(\alpha(x_{i+1})-\alpha(x_i))=f(x_{t,n-1})[\alpha(x_n)-\alpha(x_0)]-\sum_{i=0}^{n-2}\alpha(x_{i+1})(f(x_{t,i+1})-f(x_{ti}))+\alpha(x_0)(f(x_{t,n-1})-f(x_{t0}))$$
     
    $$\sum_{i=0}^{n-1}f(x_{ti})(\alpha(x_{i+1})-\alpha(x_i))=f(x_{t,n-1})[\alpha(b)-\alpha(a)]-\sum_{i=0}^{n-2}\alpha(x_{i+1})(f(x_{t,i+1})-f(x_{ti}))+\alpha(a)(f(x_{t,n-1})-f(x_{t0}))$$
     
    我们令$x_{t,n-1}=b$,$x_{t0}=a$,(为什么可以这样令?).则
     
    $$\sum_{i=0}^{n-1}f(x_{ti})(\alpha(x_{i+1})-\alpha(x_i))+\sum_{i=0}^{n-2}\alpha(x_{i+1})(f(x_{t,i+1})-f(x_{ti}))=f(b)(\alpha(b)-\alpha(a))+\alpha(a)(f(b)-f(a))=f(b)\alpha(b)-f(a)\alpha(a)$$
     
    我们很高兴地发现,$\{x_{t0},\cdots,x_{t,n-1}\}$是$[a,b]$的一个分割$Q'$,而且$x_{t,i-1}\leq x_i\leq x_{t,i}$.因此
     
    $$\int_a^bfd\alpha+\int_a^b\alpha df=f(b)\alpha(b)-f(a)\alpha(a)$$(为什么?)
  • 相关阅读:
    node.js 安装后怎么打开 node.js 命令框
    thinkPHP5 where多条件查询
    网站title中的图标
    第一次写博客
    Solution to copy paste not working in Remote Desktop
    The operation could not be completed. (Microsoft.Dynamics.BusinessConnectorNet)
    The package failed to load due to error 0xC0011008
    VS2013常用快捷键
    微软Dynamics AX的三层架构
    怎样在TFS(Team Foundation Server)中链接团队项目
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827708.html
Copyright © 2011-2022 走看看