zoukankan      html  css  js  c++  java
  • Analysis by Its History Exercise 2.4

    (Bernoulli's inequality;Jac.Bernoulli 1689,see 1744,Opera,p.380;Barrow 1670,see 1860,Works,Lectio VII,XIII,p.224).By induction on $n$,prove that
    1.\begin{equation}
    \label{eq:1.18}
    (1+a)^n\geq 1+na ~~ \mbox{for}~~ a\geq -1,n=0,1,2,\cdots
    \end{equation}

    Proof:When $n=0$,$1=1$.Suppose when $n=k(k\geq 0)$,the inequality also hold.That is
    \begin{equation}
    \label{eq:1.39}
    (1+a)^k\geq 1+ka
    \end{equation}
    Then
    \begin{equation}
    \label{eq:1.41}
    (1+a)^{k+1}=(1+a)^k(1+a)\geq (1+ka)(1+a)=1+ka+a+ka^2\geq 1+(k+1)a
    \end{equation}

    Done.

    2.\begin{equation}
    \label{eq:1.55}
    1-na<(1-a)^n<\frac{1}{1+na}~~\mbox{for}~~0<a<1,n=2,3,\cdots
    \end{equation}

    Proof:
    \begin{equation}
    \label{eq:2.44}
    \frac{1-(1-a)^n}{a}<n
    \end{equation}

    Let $f(x)=x^n$.According to the differential mean value theorem,we just need to prove that when $0<x<1$,
    \begin{equation}
    f'(x)=nx^{n-1}<n
    \end{equation}
    This is obvious.

    Now I prove
    \begin{equation}
    (1-a)^n<\frac{1}{1+na}
    \end{equation}
    Let $a=\frac{1}{k}$.We just need to prove that
    \begin{equation}
    (1+\frac{1}{k-1})^n>1+\frac{n}{k}
    \end{equation}
    This is true because
    \begin{equation}
    \label{eq:'}
    (1+\frac{1}{k-1})^n\geq 1+\frac{n}{k-1}>1+\frac{n}{k}
    \end{equation}

  • 相关阅读:
    Download~!
    单身一百年也没用
    文件包含
    重温Bootstrap
    静态网页与动态网页的理解
    百度检索小技巧
    关于网络学习中易混淆知识点的辨析
    常见的网站功能需求及解决方案
    <textarea>输入框提示文字
    利用JavaScript函数对字符串进行加密
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827717.html
Copyright © 2011-2022 走看看