zoukankan      html  css  js  c++  java
  • Analysis by Its History Exercise 2.3

    By using $2\cdot 4^3-5^3=3$,obtain the formula
    \begin{equation}
    \label{eq:12.38}
    \sqrt[3]{2}=\frac{5}{4}(1+\frac{1}{1\cdot 125}-\frac{2}{1\cdot
    2\cdot (125)^2}+\frac{2\cdot 5}{1\cdot 2\cdot 3\cdot
    (125)^3}-\frac{2\cdot 5\cdot 8}{1\cdot 2\cdot 3\cdot 4
    (125)^4}+\cdots )
    \end{equation}


    Proof:

    \begin{equation}
    \label{eq:12.45}
    \sqrt[3]{2}=\frac{5}{4}\sqrt[3]{1+\frac{3}{5^3}}
    \end{equation}
    Now we expande
    \begin{equation}
    \label{eq:12.49}
    (1+x)^{\frac{1}{3}}
    \end{equation}($|x|<1$)as
    \begin{equation}
    \label{eq:12.50}
    1+\frac{\frac{1}{3}}{1!}x+\frac{\frac{1}{3}(\frac{1}{3}-1)}{2!}x^2+\frac{\frac{1}{3}(\frac{1}{3}-1)(\frac{1}{3}-2)}{3!}x^3+\cdots
    \end{equation}
    Simplify \ref{eq:12.50} as
    \begin{equation}
    \label{eq:12.55}
    1+\frac{1}{3}x-\frac{1\cdot 2}{3^22!}x^2+\frac{1\cdot 2\cdot 5}{3^33!}x^3+\cdots
    \end{equation}
    Let $x=\frac{3}{5^3}$,then \ref{eq:12.55} becomes
    \begin{equation}
    \label{eq:1.05}
    1+\frac{1}{5^3}-\frac{1\cdot 2}{2!5^3}+\frac{1\cdot 2\cdot 5}{3!5^3}+\cdots
    \end{equation}
    So \ref{eq:12.38} is verified.

  • 相关阅读:
    二 Capacity Scheduler 计算能力调度器
    一:yarn 介绍
    2.hbase原理(未完待续)
    1.安装hbase
    创建第一个vue项目
    初学vue(二)
    第一次面试
    面试题
    C#冒泡排序
    面试真题(.NET/Sqlserver/web前端)
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827719.html
Copyright © 2011-2022 走看看