zoukankan      html  css  js  c++  java
  • 模素数$p$乘法与模素数$p$加法形成的有限域

    Suppose $p$ is a positive prime number,we now define a binary operation $\bigotimes$:If $rs\equiv t (\hbox{mod}p)(0\leq t\leq p-1)$,then we say $r\bigotimes s=t$.


    Theorem : $(\{1,2,...,p-1\},\bigotimes)$ is a group.



    Proof: We want to prove $(\{1,2,...,p-1\},\bigotimes)$ is a group,which means that

    1.$\forall a,b\in \{1,2,...,p-1\}$,we have $a\bigotimes b\in \{1,2,...,p-1\}$.


    2.$\forall a,b,c\in \{1,2,...,p-1\}$,we have $(a\bigotimes b)\bigotimes c=a\bigotimes (b\bigotimes c)$.


    3.There is an identity element $e\in \{1,2,...,p-1\}$ such that $\forall a\in \{1,2,...,p-1\}$,we have $e\bigotimes a=a\bigotimes e=a$.


    4.There is an inverse for every member of $\{1,2,...,p-1\}$ ,which means that $\forall a\in \{1,2,...,p-1\}$,we have $a^{-1}\in \{1,2,...,p-1\}$ such that $a\bigotimes a^{-1}=a^{-1}\bigotimes a=e$.

    Property 1 can be easily verified as follows : $a\bigotimes b$ must not be 0.(otherwise,$p|ab$.Because $p$ is a prime number,so either $p|a$ or $p|b$.But we know that both $a$ and $b$ are less than $p$,so it is impossible).So $a\bigotimes b\in \{1,2,...,p-1\}$.As for property 3, it is very easy to verify that $e=1$.In order to prove property 2,we need three lemmas.

    lemma 1: $a\bigotimes b=b\bigotimes a$.

    Proof:Trival.

    lemma 2: $(a\bigotimes 1)\bigotimes c=(ac)\bigotimes 1=a\bigotimes c$.

    Proof:Trival.

    lemma 3: $(a\bigotimes b)\bigotimes c=(abc)\bigotimes 1$.

    According to lemma 2,$(abc)\bigotimes 1=(ab\bigotimes 1)\bigotimes c=((a\bigotimes 1)\bigotimes b)\bigotimes c=(a\bigotimes b)\bigotimes c$.$\Box$

    According to the above three lemmas,property 2 can be easily proved(How?).Now we prove property 4.In order to prove property 4,we need lemma 4.

    lemma 4:If $1\leq i<j\leq p-1$,then $\forall n\in \{1,2,...,p-1\}$,we have $i\bigotimes n\neq j\bigotimes n$.

    Proof:Otherwise,$i\bigotimes n=j\bigotimes n$.Let $in=k_1p+t_1,jn=k_2p+t_1$.So $(j-i)n=(k_2-k_1)p$.Because $p$ is prime,so $p|n$ or $p|(j-i)$.But $n<p$,$j-i<p$,so it is impossible.

    Now it is the right time to prove property 4:We have the following p-1 sequences :

    $$
    \left(
    \begin{array}{cccc}
    1\bigotimes 1&2\bigotimes 1&\cdots&(p-1)\bigotimes 1\\
    1\bigotimes 2&2\bigotimes 2&\cdots&(p-1)\bigotimes 2\\
    \vdots&\vdots&\vdots&\vdots\\
    1\bigotimes (p-1)&2\bigotimes (p-1)&\cdots&(p-1)\bigotimes (p-1)
    \end{array}
    \right)
    $$

    We can regard these $p-1$ sequences as a matrix which has $p-1$ columns and $p-1$ rows.The first column of the matrix ,according to lemma 4,is consisted by $p-1$ different numbers in $\{1,2,...,p-1\}$.Thus there must be only one number in this column which is equal to 1.The second column of the matrix is also consisted by $p-1$ different numbers in $\{1,2,...,p-1\}$.Thus there must be only one number in this column which is equal to  1.Apply similar to every column,it can be verified that there must be only one number in each column be 1.Thus the property 4 is proved. $\Box$.

  • 相关阅读:
    剑指offer-整数中1出现的次数
    剑指offer-连续子数组的最大和
    剑指offer-最小的k个数
    剑指offer-数组中超过一半的数字
    剑指offer-二叉搜索树与双向链表
    剑指offer-复杂链表的复制
    剑指offer-二叉树中和为某一值的路径
    剑指offer-二叉搜索树的后序遍历
    Alpha 冲刺 (7/10)
    Alpha 冲刺 (6/10)
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827748.html
Copyright © 2011-2022 走看看