zoukankan      html  css  js  c++  java
  • 模素数$p$乘法与模素数$p$加法形成的有限域

    Suppose $p$ is a positive prime number,we now define a binary operation $\bigotimes$:If $rs\equiv t (\hbox{mod}p)(0\leq t\leq p-1)$,then we say $r\bigotimes s=t$.


    Theorem : $(\{1,2,...,p-1\},\bigotimes)$ is a group.



    Proof: We want to prove $(\{1,2,...,p-1\},\bigotimes)$ is a group,which means that

    1.$\forall a,b\in \{1,2,...,p-1\}$,we have $a\bigotimes b\in \{1,2,...,p-1\}$.


    2.$\forall a,b,c\in \{1,2,...,p-1\}$,we have $(a\bigotimes b)\bigotimes c=a\bigotimes (b\bigotimes c)$.


    3.There is an identity element $e\in \{1,2,...,p-1\}$ such that $\forall a\in \{1,2,...,p-1\}$,we have $e\bigotimes a=a\bigotimes e=a$.


    4.There is an inverse for every member of $\{1,2,...,p-1\}$ ,which means that $\forall a\in \{1,2,...,p-1\}$,we have $a^{-1}\in \{1,2,...,p-1\}$ such that $a\bigotimes a^{-1}=a^{-1}\bigotimes a=e$.

    Property 1 can be easily verified as follows : $a\bigotimes b$ must not be 0.(otherwise,$p|ab$.Because $p$ is a prime number,so either $p|a$ or $p|b$.But we know that both $a$ and $b$ are less than $p$,so it is impossible).So $a\bigotimes b\in \{1,2,...,p-1\}$.As for property 3, it is very easy to verify that $e=1$.In order to prove property 2,we need three lemmas.

    lemma 1: $a\bigotimes b=b\bigotimes a$.

    Proof:Trival.

    lemma 2: $(a\bigotimes 1)\bigotimes c=(ac)\bigotimes 1=a\bigotimes c$.

    Proof:Trival.

    lemma 3: $(a\bigotimes b)\bigotimes c=(abc)\bigotimes 1$.

    According to lemma 2,$(abc)\bigotimes 1=(ab\bigotimes 1)\bigotimes c=((a\bigotimes 1)\bigotimes b)\bigotimes c=(a\bigotimes b)\bigotimes c$.$\Box$

    According to the above three lemmas,property 2 can be easily proved(How?).Now we prove property 4.In order to prove property 4,we need lemma 4.

    lemma 4:If $1\leq i<j\leq p-1$,then $\forall n\in \{1,2,...,p-1\}$,we have $i\bigotimes n\neq j\bigotimes n$.

    Proof:Otherwise,$i\bigotimes n=j\bigotimes n$.Let $in=k_1p+t_1,jn=k_2p+t_1$.So $(j-i)n=(k_2-k_1)p$.Because $p$ is prime,so $p|n$ or $p|(j-i)$.But $n<p$,$j-i<p$,so it is impossible.

    Now it is the right time to prove property 4:We have the following p-1 sequences :

    $$
    \left(
    \begin{array}{cccc}
    1\bigotimes 1&2\bigotimes 1&\cdots&(p-1)\bigotimes 1\\
    1\bigotimes 2&2\bigotimes 2&\cdots&(p-1)\bigotimes 2\\
    \vdots&\vdots&\vdots&\vdots\\
    1\bigotimes (p-1)&2\bigotimes (p-1)&\cdots&(p-1)\bigotimes (p-1)
    \end{array}
    \right)
    $$

    We can regard these $p-1$ sequences as a matrix which has $p-1$ columns and $p-1$ rows.The first column of the matrix ,according to lemma 4,is consisted by $p-1$ different numbers in $\{1,2,...,p-1\}$.Thus there must be only one number in this column which is equal to 1.The second column of the matrix is also consisted by $p-1$ different numbers in $\{1,2,...,p-1\}$.Thus there must be only one number in this column which is equal to  1.Apply similar to every column,it can be verified that there must be only one number in each column be 1.Thus the property 4 is proved. $\Box$.

  • 相关阅读:
    启动hadoop集群的时候只能启动一个namenode,另一个报错There appears to be a gap in the edit log. We expected txid 6, but got txid 10.
    YARN的HA
    CSS3 文本效果:text-shadow、box-shadow、text-overflow、word-wrap、word-break
    CSS3 渐变(Gradients):在两个或多个指定的颜色之间显示平稳的过渡
    CSS3 背景:几个新的背景属性,提供更大背景元素控制
    CSS3 圆角:使用 CSS3 border-radius 属性,你可以给任何元素制作 "圆角"
    CSS3 边框:创建圆角边框,添加阴影框
    CSS 网页布局的集中实现方式
    CSS 计数器:通过一个变量来设置,根据规则递增变量
    CSS 表单:使用 CSS 来渲染 HTML 的表单元素
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827748.html
Copyright © 2011-2022 走看看