如果$\sum u_n$收敛,则$\sum u_n^2$和$\sum \frac{u_n}{1+u_n}$也收敛.
证明:$\sum u_n$收敛,说明对于任意给定的正实数$\varepsilon$,都存在相应的正整数$N_0$,使得对于一切$p,q\geq N_0$都有
\begin{equation}
\sum_{i=p}^qu_i<\varepsilon
\end{equation}
即
\begin{equation}
(\sum_{i=p}^qu_i)^2<\varepsilon^2
\end{equation}
而
\begin{equation}
\sum_{i=p}^qu_i^2<(\sum_{i=p}^qu_i)^2<\varepsilon^2
\end{equation}
因此$\sum u_n^2$收敛.
而$\frac{u_n}{1+u_n}<u_n$,根据比较判别法,可知
\begin{equation}
\sum \frac{u_n}{1+u_n}
\end{equation}收敛.