zoukankan      html  css  js  c++  java
  • 陶哲轩实分析 习题11.4.2

    Let $f$ be continuous and Riemann integrable on $[a, b]$ and $f(x) \geq 0$ for all $x \in [a,b]$. I'm trying to show that if $\int^b_a f(x) \ dx = 0$ implies that $f(x) = 0$ for all $x \in [a,b]$.




    My answer:

    Prove by contradiction.If not,then $\exists x_0\in[a,b]$ such that $f(x_0)> 0$.$f$ is continuous on $[a,b]$,which means $\exists \varepsilon>0$ such that $\forall t\in (x_0-\varepsilon,x_0+\varepsilon)$,$|f(t)-f(x_0)|\leq \frac{f(x_0)}{2}$.So $\forall t\in (x_0-\varepsilon,x_0+\varepsilon)$,$\frac{f(x_0)}{2}\leq f(t)\leq \frac{3f(x_0)}{2}$.Now set a [partition] $P$ of $[a,b]$ such that $x_0-\varepsilon,x_0+\varepsilon\in P$.Then $L(f,P)\geq \varepsilon f(x_0)$(Why?).Because $\int_a^bf(x)dx\geq L(f,P)$(Why?),so $\int_a^bf(x)dx\geq \varepsilon f(x_0)>0$,this contradicts "$\int^b_a f(x) \ dx = 0$".So $\forall x\in [a,b]$,$f(x)=0$.

  • 相关阅读:
    JS4
    JS3
    JS2
    JS1
    Dos命令
    面向对象的复习
    9.14Css
    9.13列表的用法
    9.12Css
    9.11Css
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827785.html
Copyright © 2011-2022 走看看