zoukankan      html  css  js  c++  java
  • 陶哲轩实分析习题8.5.19

    Let $X$ be a set, and let $\Omega$ be the space of all pairs $(Y,\leq)$,where $Y$ is a subset of $X$ and $\leq$ is a well ordering of $Y$.If $(Y,\leq)$,$(Y',\leq')$ are elements of of $\Omega$,we say that $(Y,\leq)$ is an initial segment of $(Y',\leq')$ if there exists an $ x\in Y'$ such that $ Y:=\{y\in Y':y<'x\}$(so in particular $ Y\subsetneq Y'$),and for any $ y,y'\in Y$,$ y\leq y'$ if and only if $ y\leq'y'$.Define a relation $ \preceq$ on $ \Omega$ by defining $ (Y,\leq)\preceq (Y',\leq')$ if either $ (Y,\leq)=(Y',\leq')$ or $ (Y,\leq)$ is an initial segment of $ (Y',\leq')$.Show that $ \preceq$ is a partial ordering of $ \Omega$.


    Proof:

    1.Reflexivity:$\forall (A,\leq)\in \Omega$,$(A,\leq)=(A,\leq)$,so $(A,\leq)\preceq(A,\leq)$.

    2.Anti-symmetry:If $(A,\leq)\preceq(B,\leq')$,and $(B,\leq')\preceq(A,\leq)$,then if $(B,\leq')=(A,\leq)$,done.Otherwise,$(A,\leq)$ is an initial segment of $(B,\leq')$,and $(B,\leq')$ is an initial segment of $(A,\leq)$,this contradicts 良序集的一节,So $(A,\leq)=(B,\leq')$.

    3.Transitivity:If $(A,\leq)\preceq(B,\leq')$,and $(B,\leq')\preceq (C,\leq'')$,then $(A,\leq)\preceq (C,\leq'')$.This is because when $(A,\leq)\preceq(B,\leq')$,if $(A,\leq)=(B,\leq')$,then of course $(A,\leq)\preceq (C,\leq'')$.If $(A,\leq)$ is an initial segment of $(B,\leq')$,then $A=\{y\in B:y<'x\}$,because $(B,\leq')\preceq (C,\leq'')$,if $(B,\leq')=(C,\leq'')$,then of course $(A,\leq)\preceq (C,\leq'')$.If $(B,\leq')$ is an initial segment of $(C,\leq'')$ which means that $B=\{y\in C:y<''c\}$.Then it is obvious that $(A,\leq)$ is an initial segment of $(C,\leq'')$.$\Box$


    There is exactly one minimal element of $\Omega$,what is it?

    Proof:

    The minimal element of $\Omega$ is $(\emptyset,\leq)$.There is no smaller.



    Using Zorn's lemma,conclude the well ordering principle:Every set $X$ has at least one well-ordering.

    Proof:

    See 良序原理



    Use the well ordering principle to prove the axiom of choice.

    Proof:From the well ordering principle we know that $I$ can be well ordered ,then by using strong induction,we can easily conclude the axiom of choice.$\Box$

  • 相关阅读:
    Google官方关于Android架构中MVP模式的示例续-DataBinding
    值不值
    [译]Godot系列教程五
    [译]Google官方关于Android架构中MVP模式的示例
    遭遇Web print
    如何寻找有价值的点
    充电时间 Go中的数组、切片、map简单示例
    一段良好的程序永远不应该发生panic异常
    居然是Firefox没有抛弃我们
    macOS 升级到了10.12.1
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827817.html
Copyright © 2011-2022 走看看