zoukankan      html  css  js  c++  java
  • Elementary Methods in Number Theory Exercise 1.5.15

    Let $p_1,p_2,\cdots,p_k$ be a finite set of prime numbers.Prove that the number of positive integers $n\leq x$ that can be written in the form $n=p_1^{r_1}\cdots p_k^{r_k}$ is at most
    \begin{equation}
    \prod _{i=1}^k(\log_{p_i}x +1)
    \end{equation}

    Prove that if $x$ is sufficiently large,then there are positiveintegers $n\leq x$ that can not be represented in this way.Use this to give another proof that the number of primes is infinite.


    Proof:

    (1)Simple.


    (2)I need to prove that
    \begin{equation}
    \lim_{x\to\infty}\frac{\prod _{i=1}^k(\log_{p_i}x+1)}{x}=0
    \end{equation}
    I just need to prove that
    \begin{equation}
    \lim_{x\to\infty}\prod_{i=1}^k \frac{\log_{p_i}x+1}{\sqrt[k]{x}}=0
    \end{equation}

    I just need to prove that $\forall 1\leq i\leq k$,
    \begin{equation}
    \lim_{x\to\infty}\frac{\log_{p_i}x}{\sqrt[k]{x}}=0
    \end{equation}
    This is obvious(Why?)

    注:这道题给我很大启发:其实,素数有无限个是很容易从直观上理解的.假如只有有限个素数$p_1,p_2,\cdots,p_n$,那么根据算术基本定理,所有的正整数都可以写成这种形式:$$p_1^{r_1}p_2^{r_2}\cdots p_n^{r_n}$$这种形式无疑无法将每一个正整数表达出来,因为仔细观察会发现,$\forall 1\leq i\leq n$,$r_i$只要加上1,整个式子将翻好几倍,根本无法一格一格地变化.这种直观上的理解严格化,就体现在这篇博文中——它反映出素数之所以有无限个的原因是对数函数增长太慢,根本比不过幂函数的增长速度.或者换一句话说,是指数函数增长太快.

  • 相关阅读:
    U8g2库I2C总线再次突破性调试成功
    要学的东西太多了,还想学习opencv
    中断知识
    别人做的扫地机器人,有机会我也想搞一台!
    团队冲刺第五天
    第八周学习进度
    团队冲刺第四天
    构建之法1
    团队冲刺第三天
    团队冲刺第二天
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3828017.html
Copyright © 2011-2022 走看看