zoukankan      html  css  js  c++  java
  • Elementary methods in number theory exercise 1.4.37 $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ is not an integer

    For $n\geq 2$,the rational number
    \begin{equation}\label{eq:343242}
    1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
    \end{equation}is not an integer.


    First let's look at an example:

    \begin{align*}
    1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}&=1+\frac{1}{2^1}+\frac{1}{3^1}+\frac{1}{2^2}+\frac{1}{5}+\frac{1}{2\times
    3}=\frac{2^43^25+2^33^25+2^43\times 5+2^23^25+2^43^2+2^33\times 5}{2^43^25}
    \end{align*}


    In this example,we find that one term of the numerator is $2^43^2$,there is no $5$ in this term,and every other term in numerator has 5,in denominator there is also a 5.So $$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}$$ is not an integer(Why?)


    Now we prove the theorem formally.

    Proof:Let $p_1<p_2<p_3<\cdots<p_k$,$p_1,p_2,\cdots,p_k$ are all the primes which are not larger than $n$.For $2\leq t\leq n$,the standard factorization of $t$ is
    \begin{equation}
    p_1^{\alpha_{1t}}p_2^{\alpha_{2t}}\cdots p_k^{\alpha_{kt}}
    \end{equation}
    where $\alpha_{1t},\alpha_{2t},\cdots,\alpha_{kt}\geq 0$.Let's turn \ref{eq:343242} into
    \begin{equation}
    \label{eq:824}
    \sum_{i=1}^n\frac{\frac{1\times 2\times\cdots\times n}{i}}{n!}
    \end{equation}
    The standard factorization of $n!$ is
    \begin{equation}
    p_1^{l_1}p_2^{l_2}\cdots p_k^{l_k}
    \end{equation}
    It is easy to verify that $\forall i< p_k$,the standard factorization of
    \begin{equation}
    \frac{1\times 2\times \cdots \times n}{i}
    \end{equation}is
    \begin{equation}
    \Delta_1\Delta_2\cdots p_k^{l_k}
    \end{equation}(Why?)
    When $n\geq i>p_k$,suppose the standard factorization of $i$ is
    \begin{equation}
    p_1^{h_1}p_2^{h_2}\cdots p_k^{h_k}
    \end{equation}
    Then it can be verified that $h_k=0$(I have to say this is not a easy thing to do ,because in order to prove this,one should use the
    following lemma:

    lemma:If $p$ is a prime,then there must exists a prime $q$ such that $p<q<2p$.


    I believe this lemma is true,but at present I don't know how to prove it),so the standard factorization of

    \begin{equation}
    \frac{1\times 2\times\cdots \times n}{i}
    \end{equation}is
    \begin{equation}
    \Delta'_1\Delta'_2\cdots p_k^{l_k}
    \end{equation}

    The standard factorization of
    \begin{equation}
    \frac{1\times 2\times\cdots\times n }{p_k}
    \end{equation}is
    \begin{equation}
    \Delta_1''\Delta_2''\cdots p_k^{l_k-1}
    \end{equation}
    So \ref{eq:824} is not an integer(Why?)

  • 相关阅读:
    ubuntu 制做samba
    《Programming WPF》翻译 第4章 前言
    《Programming WPF》翻译 第4章 3.绑定到数据列表
    《Programming WPF》翻译 第4章 4.数据源
    《Programming WPF》翻译 第5章 6.触发器
    《Programming WPF》翻译 第4章 2.数据绑定
    《Programming WPF》翻译 第4章 1.不使用数据绑定
    《Programming WPF》翻译 第5章 7.控件模板
    《Programming WPF》翻译 第5章 8.我们进行到哪里了?
    《Programming WPF》翻译 第5章 5.数据模板和样式
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3828044.html
Copyright © 2011-2022 走看看