zoukankan      html  css  js  c++  java
  • Elementary Methods in Number Theory Exercise 1.2.26 The Heisenberg group

    Let $H_3(\mathbf{Z})$ be the set of all matrices of the form
    \begin{equation}
    \begin{pmatrix}
    1&a&c\\
    0&1&b\\
    0&0&1\\
    \end{pmatrix}
    \end{equation}with $a,b,c\in\mathbf{Z}$ and matrix multiplication as the binary operation.Prove that $H_3(\mathbf{Z})$ is a nonabelian group.This group is called the Heisenberg group.

    Proof:
    \begin{equation}
    \begin{pmatrix}
    1&a_1&c_1\\
    0&1&b_1\\
    0&0&1\\
    \end{pmatrix}\begin{pmatrix}
    1&a_2&c_2\\
    0&1&b_2\\
    0&0&1\\
    \end{pmatrix}=\begin{pmatrix}
    1&a_2+a_1&c_2+a_1b_2+c_1\\
    0&1&b_2+b_1\\
    0&0&1\\\end{pmatrix}\end{equation}

    So the matrix multiplication is a binary operation.The identity element is
    \begin{equation}
    \begin{pmatrix}
    1&0&0\\
    0&1&0\\
    0&0&1\\
    \end{pmatrix}
    \end{equation}
    The inverse element of
    \begin{equation}\begin{pmatrix}
    1&a_1&c_1\\
    0&1&b_1\\
    0&0&1\\
    \end{pmatrix}
    \end{equation}is
    \begin{equation}
    \begin{pmatrix}
    1&-a_1&b_1a_1-c_1\\
    0&1&-b_1\\
    0&0&1\\
    \end{pmatrix}
    \end{equation}

  • 相关阅读:
    科学计算器
    ASCII码表
    面试题(2)
    面试题(1)
    ACM/ICPC竞赛
    ACM/ICPC竞赛
    ACM-ICPC竞赛模板
    杭电题目分类(1)
    ACM/ICPC竞赛
    ACM/ICPC竞赛
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3828080.html
Copyright © 2011-2022 走看看