zoukankan      html  css  js  c++  java
  • 解析函數論 Page 28 連續復變函數的最簡單的性質

    若$f(z)$與$\phi(z)$在點$z_0$處都連續,則$f(z)+\phi(z)$,$f(z)\cdot \phi(z)$以及$\frac{f(z)}{\phi(z)}$都是連續的.


    證明:$f(z)$在$z_0$處連續,意味着對於任意給定的模大於0的複數$\varepsilon_1$,都存在相應的模大於0的複數$\delta_1$,使得$\forall |z-z_0|<\delta_1$,都有
    \begin{equation}
    \label{eq:6.29}
    |f(z)-f(z_0)|<|\varepsilon_1|
    \end{equation}
    $\phi(z)$在$z_0$處連續,意味着對於任意給定的模大於0的複數$\varepsilon_2$,都存在相應的模大於0的複數$\delta_2$,使得$\forall |z-z_0|<\delta_2$,都有
    \begin{equation}
    \label{eq:6.33}
    |\phi(z)-\phi(z_0)|<|\varepsilon_2|
    \end{equation}
    因此
    \begin{equation}
    \label{eq:6.56}
    |[f(z)+\phi(z)]-[f(z_0)+\phi(z_0)]|\leq |f(z)-f(z_0)|+|\phi(z)-\phi(z_0)|<|\varepsilon_1|+|\varepsilon_2|
    \end{equation}
    因此$f(z)+\phi(z)$在$z_0$連續.

    \begin{align*}
    |f(z)\phi(z)-f(z_0)\phi(z_0)|&=|f(z)\phi(z)-f(z)\phi(z_0)+f(z)\phi(z_0)-f(z_0)\phi(z_0)|\\&=|f(z)(\phi(z)-\phi(z_0))+\phi(z_0)(f(z)-f(z_0))|\\&\leq |f(z)||\phi(z)-\phi(z_0)|+|\phi(z_0)||f(z)-f(z_0)|\\&<|\varepsilon_1||f(z)|+|\varepsilon_2||\phi(z_0)|
    \end{align*}
    由於$f(z)$在$z_0$連續,因此當包含點$z_0$的鄰域足夠小時,$|f(z)|$不超過某個正實數.綜上可見,$f(z)\phi(z)$在$z_0$處連續.


    下面證明當$\phi(z_0)\neq 0$時,
    \begin{equation}
    \label{eq:7.22}
    \frac{1}{\phi(z)}
    \end{equation}在$z_0$處是連續的.
    \begin{equation}
    \label{eq:7.29}
    |\frac{1}{\phi(z)}-\frac{1}{\phi(z_0)}|=\frac{|\phi(z)-\phi(z_0)|}{|\phi(z)\phi(z_0)|}
    \end{equation}
    當包含$z_0$的鄰域足夠小時,$\phi(z)$不爲0(因爲$\phi(z_0)$不爲0,且$\phi(z)$在$z_0$連續),因此$|\phi(z)\phi(z_0)|$足夠接近一個正實數,而$|\phi(z)-\phi(z_0)|$足夠小,因此$\frac{1}{\phi(z)}$在$z_0$處連續.

  • 相关阅读:
    解析Java反射java.lang.IllegalArgumentException: wrong number of arguments
    java中参数" ..."的用法和意思
    Synchronized方法锁、对象锁、类锁区别
    瀚云平台kafka简单原理
    ReflectionUtils.invokeMethod的作用
    实用———springmvc接收参数校验
    卷积神经网络CNN
    第一个TensorFlow程序
    TF从文件中读取数据
    TF基础5
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3828138.html
Copyright © 2011-2022 走看看