$f$ is defined on $[a,b]$,$a,b\in\mathbf{R},a<b$.$x_0\in [a,b]$.If $f$ is differentiable ,and second differentiable on $[a,b]$,then
\begin{equation}
\label{eq:29.12.51}
f'(x_0)=0,f''(x_0)>0\Rightarrow x_0 ~\mbox{is a local minimum}
\end{equation}
Proof:
\begin{equation}
\label{eq:29.12.52}
f''(x_0)=\lim_{\Delta x\to 0;\Delta x\neq 0}\frac{f'(x_0+\Delta
x)-f'(x_0)}{\Delta x}>0
\end{equation}
So,when $\Delta x>0$ and $\Delta x$ is small enough,$f'(x_0+\Delta x)-f'(x_0)>0$,so $f'(x_0+\Delta x)>0$.
When $\Delta x<0$ and $|\Delta x|$ is small enough,$f'(x_0+\Delta x)-f'(x_0)<0$,so $f'(x_0+\Delta x)<0$.So $x_0$ is a local minimum(why?According to the differential mean value theorem.)
Remark 1:Similarly,\begin{equation}
\label{eq:29.13.58}
f'(x_0)=0,f''(x_0)<0\Rightarrow x_0 ~\mbox{is a local maximum}
\end{equation}