zoukankan      html  css  js  c++  java
  • 中间人把戏

    1.设向量$(x_1,x_2)$,以及向量$(x_1+\Delta x_1,x_2+\Delta x_2)$.则
    $$
    (x_1+\Delta x_1,x_2+\Delta x_2)-(x_1,x_2)=[(x_1+\Delta x_1,x_2+\Delta x_2)-(x_1,x_2+\Delta x_2)]+[(x_1,x_2+\Delta x_2)-(x_1,x_2)]
    $$


    2.设向量$(x_1,x_2,x_3)$,以及向量$(x_1+\Delta x_1,x_2+\Delta x_2,x_3+\Delta x_3)$.则
    \begin{align*}
    (x_1+\Delta x_1,x_2+\Delta x_2,x_3+\Delta x_3)-(x_1,x_2,x_3)&=[(x_1+\Delta x_1,x_2+\Delta x_2,x_3+\Delta x_3)-(x_1,x_2+\Delta x_2,x_3+\Delta x_3)]\\&+(x_1,x_2+\Delta x_2,x_3+\Delta x_3)-(x_1,x_2,x_3)
    \end{align*}

    下面来看$(x_1,x_2+\Delta x_2,x_3+\Delta x_3)-(x_1,x_2,x_3)$.由于$x_1$已经不变,因此只用处理$x_2,x_3$,而这是1的情形.因此

    \begin{align*}
    (x_1+\Delta x_{1},x_2+\Delta x_2,x_3+\Delta x_3)-(x_1,x_2,x_3)&=[(x_1+\Delta x_1,x_2+\Delta x_2,x_3+\Delta x_3)-(x_1,x_2+\Delta x_2,x_3+\Delta x_3)]\\&+[(x_1,x_2+\Delta x_{2},x_3+\Delta x_3)-(x_1,x_2,x_3+\Delta x_3)]\\&+[(x_1,x_2,x_3+\Delta x_3)-(x_1,x_2,x_3)]
    \end{align*}


    下面我们看向量$(x_1,x_2,x_3,\cdots,x_n)$,以及向量$(x_1+\Delta x_1,x_2+\Delta x_2,x_3+\Delta x_3,\cdots,x_n+\Delta x_n)$.

    \begin{align*}(x_1+\Delta x_1,\cdots,x_n+\Delta x_n)-(x_1,\cdots,x_n)&=[(x_1+\Delta x_1,\cdots,x_n+\Delta x_n)-(x_1,\cdots,x_n+\Delta x_n)]+[(x_1,\cdots,x_n+\Delta x_n)-(x_1,\cdots,x_n)]\end{align*}

    这样子,我们就把情形化作了

    $$(x_1,x_2+\Delta x_2,x_3+\Delta x_3,\cdots,x_n+\Delta x_n)-(x_1,x_2+\Delta x_2,x_3+\Delta x_3,\cdots,x_n)$$的情形.而这个情形已经解决.

    中间人技巧的意义:

    设$A=(a_1,\cdots,a_n)\in\mathbf{R}^n$,$A+\Delta A=(a_1+\Delta a_1,\cdots,a_n+\Delta a_n)\in\mathbf{R}^n$.用图像形象表示如下:

    我们知道,当$A+\Delta A$变成$A$时,$a_1+\Delta a_1,\cdots,a_n+\Delta a_n$是肯定要变成$a_1,\cdots,a_n$.只不过,中间人把戏 让我们把这个变的过程分成$n$步,每次都保持其余的不变,而只让一个变.当这个变完了之后,就放着不动,而让下一个继续变下去.直到$n$次之后,全变完为止.

  • 相关阅读:
    228. Summary Ranges
    324. Wiggle Sort II
    42. Trapping Rain Water
    工作之后
    279. Perfect Squares
    391. Perfect Rectangle
    351. Android Unlock Patterns
    246. Strobogrammatic Number
    [LeetCode] 75. Sort Colors Java
    [Java] 80. Remove Duplicates from Sorted Array II Java
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3828241.html
Copyright © 2011-2022 走看看