zoukankan      html  css  js  c++  java
  • A field guide to algebra,theorem 1.1.3

    Let $\sum$ be a subset of $\mathbf{R}$ containing $0$ and $1$,the set $E(\sum)$ of all real numbers which are constructable from $\sum$ satisfies the following properties:

      a):if $x,y\in E(\sum)$ ,then $x+y,x-y,xy,$ and $\frac{x}{y}\in E(\sum)$ if $y\neq 0$. 

      b):if $x>0$, $x\in E(\sum)$,then $\sqrt{x}\in   E(\sum)$.



      Proof:

      a)Construction of $x+y$: $\frac{x+y}{2}$ can be constructed by taking the midpoint of $x$ and $y$(It is easy to verify that a midpoint can be constructed by drawing two circles of radius $|x-y|$ which centering at $x$ and $y$ respectively.Then drawing a line passing through the two intersection points of the circles.Then this passing line intersects with the line passing though $x$ and $y$,the intersection point is $\frac{x+y}{2}$.).Then $x+y$ can be constructed by drawing a circle centering at $\frac{x+y}{2}$ with radius $\frac{|x+y|}{2}$.


      Construction of $x-y$:$-y$ can be constructed by drawing a circle  centering at $0$ with radius $|y|$. $x+(-y)$ can be constructed,so
      $x-y$ can be constructed.
     

      Construction of $xy$:In the plane $\mathbf{R}^2$,$(x-1,0)$ can be  constructed.So the point $(x-1,y)$ can be easily
      constructed(Why?)The intersection point of the line $y'-0=y(x'-x)$  and $x'=0$ is $(0,-xy)$.So $xy$ can be constructed easily.


      Construction of $\frac{1}{y}$ if $y\neq 0$:In the plane  $\mathbf{R}^2$,$(x-xy,0)$ can be easily constructed.$(x-xy,1)$ can  be easily constructed.The intersection point of the line  $y'-0=\frac{1}{xy}(x'-x)$ and $x'=0$ is $\frac{-1}{y}$.So  $\frac{1}{y}$ can be easily constructed.



      b):In $\mathbf{R}^2$,a line $y'=kx'+c$,a circle  $(x'-a)^2+(y'-b)^2=r^2$.$r>0,k,c\in\mathbf{R}$.Let the intersection  point be $(m,n)$,then
      \begin{equation}
        \label{eq:22_11_48}
        (1+k^2)m^2+[2(c-b)k-2a]m+[a^2+(c-b)^2-r^2]=0
      \end{equation}
      Then
      \begin{equation}
        \label{eq:22_11_50}
        m=\frac{-[2(c-b)k-2a]\pm \sqrt{\Delta}}{2(1+k^2)}  
      \end{equation}
      It is a delight to see that a $\sqrt{}$ appears in  \ref{eq:22_11_50}.$\Delta  =[2(c-b)k-2a]^2-4(1+k^2)[a^2+(c-b)^2-r^2]$. Let $k=0$,then
      \begin{equation}
        \label{eq:22_16_04}
        m=\frac{2a\pm \sqrt{4r^2-4(c-b)^2}}{2}=a\pm \sqrt{r^2-(c-b)^2}
      \end{equation}

    Let $r^2-(c-b)^2=x$.For example,let $c=b$,and $r=x$,then
    \begin{equation}
      \label{eq:22_16_15}
      m=a\pm \sqrt{x}
    \end{equation}
    So $\sqrt{x}$ is constructed.$\Box$


    Remark:冬眠的老鼠(哆嗒数学QQ群(128709478)里的一个比较牛的人)has an alternative way of constructing $\sqrt{x}$,by using the power of a point.See the below picture.

    $p^2=1x$,So $p=\sqrt{x}$.So $\sqrt{x}$ is constructed.

  • 相关阅读:
    C语言I博客作业08
    C语言I博客作业07
    第十周助教总结
    关于Dev-c++运行时与Windows不兼容问题
    C语言I博客作业06
    第九周助教总结
    C语言I作业07
    C语言I博客作业06
    C语言I作业05

  • 原文地址:https://www.cnblogs.com/yeluqing/p/3828278.html
Copyright © 2011-2022 走看看