zoukankan      html  css  js  c++  java
  • 几种Normalization算法.md

    神经网络有各种归一化算法,BN,LN,IN,GN。

    1. Batch Normalization

    实现流程:对Tensor为[N, C, H, W], 把第1个样本的第1个通道,加上第2个样本的第1个通道, 加上第N个样本的第1个通道,求平均,得到通道1的均值。(注意是将累加和除以NxHxW,得到均值)

    计算方差过程类似。

    对于N本书,BN相当于把所有书的第x页加起来,计算平均值。

    2. Layer Normalization

    BN的一个缺点是需要较大的batchsize才能合理估计出训练数据的均值和方差,可能导致内存的大量消耗。

    而layer Normalization 的一个优势是不需要批训练,在单条数据内部就能归一化。

    LN对于每个样本的C、H、W维度上的数据求均值和方差。

    对于N本书,LN相当于把每一本书的所有字加起来,计算平均值。

    3. Instance Normalization

    IN是对每一个样本上的一个通道计算平均值,只在channel 内部求均值。

    对于N本书,相当于把一页书中的所有字加起来,再除以该页的总字数。

    4. Group Normalization

    GN相当于把一本C页的书,平均分成G份, 每份称为有若干页的小册子,求每个小册子的均值和方差。

    如果有一天我们淹没在茫茫人海中庸碌一生,那一定是我们没有努力活得丰盛
  • 相关阅读:
    ubuntu装openssh-client和openssh-server
    路由器开源系统openwrt配置页面定制
    linux 串口接收
    SHA算法
    密码学Hash函数
    椭圆曲线加密
    ElGamal密码
    Diffie-Hellman密钥交换
    RSA加密
    公钥密码学
  • 原文地址:https://www.cnblogs.com/yeran/p/11289879.html
Copyright © 2011-2022 走看看