zoukankan      html  css  js  c++  java
  • 剑指 Offer 68

    • 题目描述
    给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
    
    百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
    
    例如,给定如下二叉搜索树:  root = [6,2,8,0,4,7,9,null,null,3,5]
    
     
    
    示例 1:
    
    输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
    输出: 6 
    解释: 节点 2 和节点 8 的最近公共祖先是 6。
    示例 2:
    
    输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
    输出: 2
    解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
     
    
    说明:
    
    所有节点的值都是唯一的。
    p、q 为不同节点且均存在于给定的二叉搜索树中。
    • 解法一:迭代

    这道题需要注意以下几个点:

    • 求解对象是二叉搜索树,二叉搜索树的性质的左子树所有叶子节点均小于root,右子树的叶子节点均大于root。
    • 祖先的定义:若节点P在root的左(右)子树中,或P=root,则称root是p的祖先。
    • 最近公共祖先的定义:设节点root是节点p和节点q的某公共祖先,所其左子节点root.left和root.right都不是p和q的公共祖先,那么root是p和q的最近公共祖先。
    • 若root是p和q的公共祖先,那么一定有以下3种情况之一:
    1.  p和q在root的子树中,且p和q分别在异侧
    2.  p=root,q在p的左子树或右子树中
    3. q = root,p在q的左子树或右子树中

    那么这个问题就很简单了,我们通过二叉搜索树的性质,直接根据p和q的节点值大小来判断这个root在左子树还是右子树。

    首先我们令p小于q(这是为了减少比较次数),当root大于p时,说明最小公共祖先在左子树,当root大于q时,说明最小公共祖先在右子树,否则,p和q在root左右两侧或者p或者q某一个等于root, 则说明找到了 最小公共祖先。

    class Solution:
        def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
            if p.val > q.val: #p 左子节点,q右子节点
                p, q = q, p
    
            while root:
                if root.val > q.val:
                    root = root.left
                elif root.val < p.val:
                    root = root.right
                else:
                    break
            return root
                

    可能下面的更容易理解:

    class Solution:
        def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
            while root:
                if root.val < p.val and root.val < q.val: # p,q 都在 root 的右子树中
                    root = root.right # 遍历至右子节点
                elif root.val > p.val and root.val > q.val: # p,q 都在 root 的左子树中
                    root = root.left # 遍历至左子节点
                else: break
            return root

    时间复杂度O(N)

    空间复杂度O(1)

    • 解法二:递归

    这道题的实质就是在查找找左右子树满足:

    1.  p和q在root的子树中,且p和q分别在异侧
    2.  p=root,q在p的左子树或右子树中
    3. q = root,p在q的左子树或右子树中

    因此,我们可直接递归:

    当 p, q都在 root的 右子树 中,则开启递归 root.right并返回;
    否则,当 p, q都在 root的 左子树 中,则开启递归 root.left并返回;

    class Solution:
        def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
            if p.val < root.val and q.val < root.val:
                return self.lowestCommonAncestor(root.left, p, q)
            if p.val > root.val and q.val > root.val:
                return self.lowestCommonAncestor(root.right, p, q)
            return root

    时间复杂度O(N)

    空间复杂度O(1)

  • 相关阅读:
    ubuntu 16.04 安装显卡驱动,再安装cuda
    8. golang 基本类型转换
    7.golang的字符串 string
    5. 变量定义
    4. 代码规范
    3.golang 的注释
    1.windows server 201x
    exec 命令
    powershell
    1.Dockerfile
  • 原文地址:https://www.cnblogs.com/yeshengCqupt/p/13608619.html
Copyright © 2011-2022 走看看