// luogu-judger-enable-o2
/*(
FFT 模板
luogu P3803
in:
n , m
0,...,a[n]
0,...,b[m]
example:
1 2
1 2
1 2 1
1 4 5 2
*/
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
void in(long long &x){
x=0;char c=getchar();
long long y=1;
while(c<'0'||c>'9'){if(c=='-')y=-1;c=getchar();}
while(c>='0'&&c<='9'){x=(x<<3)+(x<<1)+c-'0';c=getchar();}
x*=y;
}
void o(long long x){
if(x<0){x=-x;putchar('-');}
if(x>9)o(x/10);
putchar(x%10+'0');
}
#define int long long
const int _ = 1e7+10;
const double Pi = acos(-1.0);
struct complex{
double x,y;
complex(double xx=0.0,double yy = 0.0):x(xx),y(yy){};
};
complex operator + (complex a,complex b){
return complex(a.x+b.x,a.y+b.y);
}
complex operator - (complex a,complex b){
return complex(a.x-b.x,a.y-b.y);
}
complex operator * (complex a,complex b){
return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
int n,m,N;
int limit = 1 , bit;
complex a[_],b[_];
int r[_];
void fft(complex *A,int type)
{
for(int i=0;i<limit;i++){
if(i<r[i])
swap(A[i],A[r[i]]);
}
for(int mid = 1;mid < limit;mid<<=1){//当前区间的一半
complex wn( cos(Pi/mid),type*sin(Pi/mid));
for(int R = mid << 1,j = 0;j < limit;j+=R){//回溯区间大小 最大不超过 limit
complex w(1,0);//幂?
for(int k = 0 ;k<mid;k++,w=w*wn){
complex x = A[j+k],y = w*A[j+mid+k];
A[j+k]=x+y;
A[j+k+mid]=x-y;
}
}
}
}
signed main() {
in(n);in(m);
for(int i = 0;i <= n;i++)cin>>(a[i].x);
for(int j = 0;j <= m;j++)cin>>(b[j].x);
while (limit<=n+m)limit<<=1,bit++;
for(int i = 0 ;i<limit;i++){
r[i]=(r[i>>1]>>1)|((i&1)<<(bit-1));
}
fft(a,1);
fft(b,1);
for(int i=0;i<=limit;i++)a[i]=a[i]*b[i];//y;
fft(a,-1);
for(int i=0;i<=n+m;i++){
printf("%lld ",(long long)(a[i].x/limit + 0.5));
}
return 0;
}