zoukankan      html  css  js  c++  java
  • POJ

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output

    90

    Hint

    INPUT DETAILS:

    There are five landmarks.

    OUTPUT DETAILS:

    Bessie can get home by following trails 4, 3, 2, and 1.
     
    解题思路:题目大意就是求最短路,从n到1的最短路。
    关于最短路径的思想在前面的博客有;
    代码如下:
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<queue>
     4 #include<string.h>
     5 using namespace std ;
     6 
     7 const int INF = 0x3f3f3f3f;
     8 int G[2000][2000];
     9 int d[2000];
    10 
    11 int i ,j;
    12 
    13 struct node{
    14     int num;
    15     int dis;
    16     friend bool operator<(node a ,node b)
    17     {
    18         return a.dis>b.dis;
    19     }
    20 };
    21 
    22 int main()
    23 {
    24     int M , N;
    25     int x,y,D;
    26     
    27     priority_queue<node>que;
    28     
    29     
    30     while(scanf("%d%d",&M,&N)!=EOF)
    31     {
    32         for( i = 1 ;i <= N ;i++)
    33         {
    34             for( j = 1 ;j <= N ;j++)
    35             {
    36                 G[i][j] = INF;
    37             }
    38         }
    39         
    40             for(int i  = 1 ; i <= N ;i++)
    41         {
    42             G[i][i] = 0;
    43         }
    44         for( i = 1; i <= M ;i++)
    45         {
    46             scanf("%d%d%d",&x,&y,&D);
    47             
    48                 if(G[x][y]>D)
    49                 {
    50                     G[x][y] = D;
    51                     G[y][x] = D;
    52                 }
    53             
    54         }
    55         memset(d,0x3f,sizeof(d));
    56         d[1] = 0;
    57         que.push({1,0});
    58         while(!que.empty())
    59         {
    60             node tp = que.top();
    61 
    62             que.pop();
    63             
    64             for(i = 1 ;i <= N ;i++)
    65             {
    66                 if(G[tp.num][i])
    67                 {
    68                     if(d[i]>d[tp.num]+G[tp.num][i])
    69                     {
    70                         d[i] = d[tp.num] + G[tp.num][i];
    71                         que.push({i,d[i]});
    72                     }
    73                 }
    74             }
    75         }
    76         
    77         printf("%d
    ",d[N]);
    78         while(!que.empty())
    79         {
    80             que.pop();
    81         }
    82         
    83         
    84     }
    85     return 0;
    86 }
  • 相关阅读:
    结对编程附加题、团队作业2、团队作业3评分标准
    【评分】集美大学软件工程1413班工程项目管理结对编程1-模块化
    【评分】集美大学软件工程1413班工程项目管理第0次作业——读后感
    第13周-网络
    第12周-流与文件
    第11周-多线程
    第10周-异常与多线程
    第九周-异常
    第08周-集合与泛型
    第7周-集合
  • 原文地址:https://www.cnblogs.com/yewanting/p/10798524.html
Copyright © 2011-2022 走看看