zoukankan      html  css  js  c++  java
  • 杭电 1159 Common Subsequence

    Problem Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     

    Sample Input

    abcfbc abfcab
    programming contest
    abcd mnp
     

    Sample Output

    4 2 0
     
    求最长公共子序列
     
     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<string.h>
     4 using namespace std;
     5 int dp[10000][10000]; 
     6 int main()
     7 {
     8     int lena,lenb;
     9     char a[10000],b[10000];
    10     while(scanf("%s %s",&a,&b)!=EOF)
    11     {
    12         int i,j;
    13         lena=strlen(a);
    14         lenb=strlen(b);
    15         for(i = 1 ; i <= lena ; i++)
    16         {
    17             for(j = 1 ; j <= lenb ; j++)
    18             {
    19                 if(a[i-1] == b[j-1])
    20                     dp[i][j]=dp[i-1][j-1]+1;
    21                 else
    22                     dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
    23             }
    24         }
    25         printf("%d
    ",dp[lena][lenb]);
    26     }
    27 }
  • 相关阅读:
    springBoot(3)---目录结构,文件上传
    springBoot(2)---快速创建项目,初解jackson
    VueJs(14)---理解Vuex
    VueJs(13)---过滤器
    VueJs(12)---vue-router(导航守卫,路由元信息,获取数据)
    php多进程中的阻塞与非阻塞
    php 中的信号处理
    dede中arcurl的解析
    dede5.7 GBK 在php5.4环境下 后台编辑器无法显示文章内容
    php5.3 php-fpm 开启 关闭 重启
  • 原文地址:https://www.cnblogs.com/yexiaozi/p/5766021.html
Copyright © 2011-2022 走看看