zoukankan      html  css  js  c++  java
  • HDOJ 4686 Arc of Dream 矩阵高速幂

    矩阵高速幂:


    依据关系够建矩阵 , 高速幂解决.


    Arc of Dream

    Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
    Total Submission(s): 2164    Accepted Submission(s): 680


    Problem Description
    An Arc of Dream is a curve defined by following function:

    where
    a0 = A0
    ai = ai-1*AX+AY
    b0 = B0
    bi = bi-1*BX+BY
    What is the value of AoD(N) modulo 1,000,000,007?

     

    Input
    There are multiple test cases. Process to the End of File.
    Each test case contains 7 nonnegative integers as follows:
    N
    A0 AX AY
    B0 BX BY
    N is no more than 1018, and all the other integers are no more than 2×109.
     

    Output
    For each test case, output AoD(N) modulo 1,000,000,007.
     

    Sample Input
    1 1 2 3 4 5 6 2 1 2 3 4 5 6 3 1 2 3 4 5 6
     

    Sample Output
    4 134 1902
     

    Author
    Zejun Wu (watashi)
     

    Source
     


    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    using namespace std;
    
    typedef long long int LL;
    
    const LL mod=1000000007LL;
    
    struct Matrix
    {
        int x,y;
        LL m[6][6];
        Matrix() {x=y=5;memset(m,0,sizeof(m));}
        void one()
        {
            for(int i=0;i<5;i++) m[i][i]=1LL;
        }
        void show()
        {
            cout<<x<<" * "<<y<<endl;
            for(int i=0;i<x;i++)
            {
                for(int j=0;j<y;j++)
                    cout<<m[i][j]<<",";
                cout<<endl;
            }
        }
    };
    
    Matrix Mul(Matrix& a,Matrix& b)
    {
        Matrix ret;
        ret.x=a.x; ret.y=b.y;
        for(int i=0;i<a.x;i++)
        {
            for(int j=0;j<b.y;j++)
            {
                LL temp=0;
                for(int k=0;k<b.y;k++)
                {
                    temp=(temp+(a.m[i][k]*b.m[k][j])%mod)%mod;
                }
                ret.m[i][j]=temp%mod;
            }
        }
        return ret;
    }
    
    Matrix quickPow(Matrix m,LL x)
    {
        Matrix e;
        e.one();
        while(x)
        {
            if(x&1LL) e=Mul(e,m);
            m=Mul(m,m);
            x/=2LL;
        }
        return e;
    }
    
    LL n,A0,B0,AX,AY,BX,BY;
    
    Matrix init_matrix()
    {
        Matrix ret;
        ret.m[0][0]=1;
        ret.m[1][0]=AY; ret.m[1][1]=AX;
        ret.m[2][0]=BY; ret.m[2][2]=BX;
        ret.m[3][0]=(BY*AY)%mod; ret.m[3][1]=(AX*BY)%mod;
        ret.m[3][2]=(BX*AY)%mod; ret.m[3][3]=(AX*BX)%mod;
        ret.m[4][3]=1LL; ret.m[4][4]=1LL;
        return ret;
    }
    
    Matrix Beg()
    {
        Matrix beg;
        beg.m[0][0]=1;
        beg.m[1][0]=A0;
        beg.m[2][0]=B0;
        beg.m[3][0]=A0*B0%mod;
        return beg;
    }
    
    int main()
    {
        while(cin>>n)
        {
            cin>>A0>>AX>>AY>>B0>>BX>>BY;
            A0=A0%mod; AX=AX%mod; AY=AY%mod;
            B0=B0%mod; BX=BX%mod; BY=BY%mod;
            Matrix m=init_matrix();
            m=quickPow(m,n);
            Matrix beg=Beg();
            LL ans=0;
            for(int i=0;i<5;i++)
                ans=(ans+beg.m[i][0]*m.m[4][i]%mod)%mod;
            cout<<ans<<endl;
        }
        return 0;
    }
    



  • 相关阅读:
    效能分析
    个人项目词频统计2
    PSP 进度条 柱状图 饼状图
    四人小组项目
    结对编程
    品评历届学生作品
    构建之法终于到手了
    补上周一的进度条进度条:
    燃尽图
    scrum站立会议
  • 原文地址:https://www.cnblogs.com/yfceshi/p/6731496.html
Copyright © 2011-2022 走看看