zoukankan      html  css  js  c++  java
  • Hdu4786

    Fibonacci Tree

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2340    Accepted Submission(s): 748


    Problem Description
      Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
      Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
    (Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
     

    Input
      The first line of the input contains an integer T, the number of test cases.
      For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
      Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
     

    Output
      For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
     

    Sample Input
    2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
     

    Sample Output
    Case #1: Yes Case #2: No
     

    Source





    题意:问构成的生成树当中是否存在黑色边(边为1)数为斐波那契数
    思路:求出生成树中最小包括的黑色边数。和最多黑色边数,假设有斐波那契数在两者之间,则能够构成。由于黑白边能够搭配使用
    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    using namespace std;
    int n,m;
    int fibo[50];
    int f[100010];
    struct node
    {
        int u,v,c;
    } s[100010];
    
    bool cmp1(node x , node y)
    {
        return x.c < y.c;
    }
    
    bool cmp2(node x, node y)
    {
        return  x.c > y.c;
    }
    
    int find(int x)
    {
        return x == f[x] ? x : f[x] = find(f[x]);
    }
    
    void Union(int x ,int y)
    {
        int fx = find(x);
        int fy = find(y);
    
        if(fx != fy)
        {
            f[fx] = fy;
        }
    }
    
    int main()
    {
    #ifdef xxz
        freopen("in.txt","r",stdin);
    #endif
        fibo[1] = 1;
        fibo[2] = 2;
        for(int i = 3; ; i++)
        {
            fibo[i] = fibo[i-1] + fibo[i-2];
            if(fibo[i] >= 100000) break;
        }
    
        int T,Case = 1;;
        scanf("%d",&T);
    
        while(T--)
        {
    
    
            scanf("%d%d",&n,&m);
            for(int i = 1; i <= n; i++) f[i] = i;
    
            for(int i = 0; i < m; i++)
            {
    
                scanf("%d%d%d",&s[i].u,&s[i].v,&s[i].c);
                Union(s[i].u,s[i].v);
            }
            int cent = 0;
            int bl = 0, bh = 0;
            int root = 0,size = 0;
    
            for(int i = 1; i <= n; i++)
            {
                if(f[i] == i)
                {
                    cent++;
                    root = i;
                }
            }
    
            printf("Case #%d: ",Case++);
            if(cent >= 2) cout<<"No"<<endl;//首先要推断能否构成一个生成树。推断根节点个数是否为1即可
            else
            {
                sort(s,s+m,cmp1);
                for(int i = 1; i <= n; i++) f[i] = i;
    
                for(int i = 0; i < m; i++)
                {
                    int fu = find(s[i].u);
                    int fv = find(s[i].v);
                    if(fu == fv) continue;
    
                    bl += s[i].c;
                    size++;
                    Union(s[i].u,s[i].v);
                    if(size == n-1) break;
                }
    
                size = 0;
                sort(s,s+m,cmp2);
                for(int i = 1; i <= n; i++) f[i] = i;
    
    
                for(int i = 0; i < m; i++)
                {
                    int fu = find(s[i].u);
                    int fv = find(s[i].v);
                    if(fu == fv) continue;
    
                    bh += s[i].c;
                    size++;
                    Union(s[i].u,s[i].v);
                    if(size == n-1) break;
                }
    
    
                int flag = 0;
                for(int i =1; fibo[i] <= 100000 ; i++ )
                {
                    if(fibo[i] >= bl && fibo[i] <= bh)
                    {
                        flag = 1;
                        break;
                    }
                }
                if(flag) printf("Yes
    ");
                else printf("No
    ");
    
            }
    
    
        }
    }


  • 相关阅读:
    kitten编程猫 学习教程(一) 学习笔记
    华为中国生态大会2021举行在即,GaussDB将重磅发布5大解决方案
    华为云官网负责人明哥:我们是如何做到门面不倒,8个月挑战业界翘楚?
    为啥你写的代码总是这么复杂?
    云图说|不要小看不起眼的日志,“小日志,大作用”
    如何高效地存储与检索大规模的图谱数据?
    华为云PB级数据库GaussDB(for Redis)揭秘第十期:GaussDB(for Redis)迁移系列(上)
    开发者必看,面试官心中的最佳数据库人才模型是什么样?
    华为云PB级数据库GaussDB(for Redis)揭秘第九期:与HBase的对比
    技术实践丨如何解决异步接口请求快慢不均导致的数据错误问题?
  • 原文地址:https://www.cnblogs.com/yfceshi/p/6964395.html
Copyright © 2011-2022 走看看