zoukankan      html  css  js  c++  java
  • 斯坦福《机器学习》Lesson1-3感想-------3、线性回归二

    从上一篇可知。在监督学习里最重要的就是确定假想函数h(θ),即通过使得代价函数J(θ)最小,从而确定h(θ).


    上一篇通过梯度下降法求得J(θ)最小,这篇我们将使用矩阵的方法来解释。

     

    1、普通最小二乘法

    利用矩阵的方式,m个训练集(x,y)能够例如以下表示:



    因此,所以

    依据 可知,


    为使J(θ)最小,通过求导推导可得:

        

    从(式1)中能够看出。须要对矩阵求逆,因此仅仅适用于逆矩阵存在的时候。

    这就是普通最小二乘法。

     

    2、局部加权线性回归(LocallyWeighted Linear Regression,LWLR)

       普通最小二乘法的线性回归有可能出现欠拟合的现象,由于它求的是具有最小均值方差的无偏预计。因此我们能够选择局部加权线性回归算法。

    在这个算法里,我们给待预測点附近的每个点赋予一定的权重,然后在这个子集上基于最小均值方差来进行普通的回归。与待预測点越近。权值越重。即使用核对附近的点赋予更高的权重。最经常使用的就是高斯核。高斯核相应的权重例如以下:

      

    在(式2)中,我们唯一须要确定的就是。它是用户指定的參数,决定了对附近的点赋予多大的权重。

    因此如(式3)所看到的。局部加权线性回归是一个无參算法。


  • 相关阅读:
    http调用接口,并解析返回的xml数据,显示在jsp页面上
    项目与tomcat
    项目依赖和部署
    数据库上操作实例 找到要操作的表---筛选---选中要操作的字段---输入
    端口占用问题
    快捷键
    获取页面上的数据
    布尔类型
    EL表达式
    mac oxs 上查看进程监听的端口号 lsof
  • 原文地址:https://www.cnblogs.com/yfceshi/p/7364350.html
Copyright © 2011-2022 走看看