zoukankan      html  css  js  c++  java
  • CPU上下文切换

    进程在竞争 CPU 的时候并没有真正运行,为什么还会导致系统的负载升高呢?CPU 上下文切换就是罪魁祸首。

    我们都知道,Linux 是一个多任务操作系统,它支持远大于 CPU 数量的任务同时运行。当然,这些任务实际上并不是真的在同时运行,而是因为系统在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。

    而在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好CPU 寄存器和程序计数器(Program Counter,PC)。

    CPU 寄存器,是 CPU 内置的容量小、但速度极快的内存。而程序计数器,则是用来存储 CPU 正在执行的指令位置、或者即将执行的下一条指令位置。它们都是 CPU 在运行任何任务前,必须的依赖环境,因此也被叫做CPU 上下文

    知道了什么是 CPU 上下文,我想你也很容易理解 CPU 上下文切换 。

    CPU 上下文切换,就是先把前一个任务的 CPU 上下文(也就是 CPU 寄存器和程序计数器)保存起来,

    然后加载新任务的上下文到这些寄存器和程序计数器,最后再跳转到程序计数器所指的新位置,运行新任务。 

    而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。

     根据任务的不同 ,CPU 的上下文切换就可以分为几个不同的场景:

    也就是进程上下文切换、线程上下文切换以及中断上下文切换。 

    进程上下文切换

    Linux 按照特权等级,把进程的运行空间分为内核空间和用户空间,分别对应着下图中, CPU 特权等级的 Ring 0 和 Ring 3。

    内核空间(Ring 0)具有最高权限,可以直接访问所有资源; 
    用户空间(Ring 3)只能访问受限资源,不能直接访问内存等硬件设备,必须通过系统调用陷入到内核中,才能访问这些特权资源。 

    换个角度看,也就是说,进程既可以在用户空间运行,又可以在内核空间中运行。进程在用户空间运行时,被称为进程的用户态,而陷入内核空间的时候,被称为进程的内核态。

    从用户态到内核态的转变,需要通过 系统调用 来完成。比如,当我们查看文件内容时,就需要多次系统调用来完成:首先调用 open() 打开文件,然后调用 read() 读取文件内容,并调用 write() 将内容写到标准输出,最后再调用 close() 关闭文件。

    那么,系统调用的过程有没有发生 CPU 上下文的切换呢?答案自然是肯定的。

    CPU 寄存器里原来用户态的指令位置,需要先保存起来。接着,为了执行内核态代码,CPU 寄存器需要更新为内核态指令的新位置。最后才是跳转到内核态运行内核任务。

    而系统调用结束后,CPU 寄存器需要 恢复原来保存的用户态,然后再切换到用户空间,继续运行进程。所以,一次系统调用的过程,其实是发生了两次 CPU 上下文切换

     不过,需要注意的是,系统调用过程中,并不会涉及到虚拟内存等进程用户态的资源,也不会切换进程。这跟我们通常所说的进程上下文切换是不一样的:

    进程上下文切换,是指从一个进程切换到另一个进程运行。
    而系统调用过程中一直是同一个进程在运行。

    所以, 系统调用过程通常称为特权模式切换,而不是上下文切换 。但实际上,系统调用过程中,CPU 的上下文切换还是无法避免的。 

    进程上下文切换跟系统调用的区别

    首先,你需要知道,进程是由内核来管理和调度的,进程的切换只能发生在内核态。所以,进程的上下文不仅包括了虚拟内存、栈、全局变量等用户空间的资源,

    还包括了内核堆栈、寄存器等内核空间的状态。

    因此,进程的上下文切换就比系统调用时多了一步:在保存当前进程的内核状态和 CPU 寄存器之前,需要先把该进程的虚拟内存、栈等保存下来;

    而加载了下一进程的内核态后,还需要刷新进程的虚拟内存和用户栈。

     根据实际的测试报告,每次上下文切换都需要几十纳秒到数微秒的 CPU 时间。这个时间还是相当可观的,特别是在进程上下文切换次数较多的情况下,

    很容易导致 CPU 将大量时间耗费在寄存器、内核栈以及虚拟内存等资源的保存和恢复上,进而大大缩短了真正运行进程的时间。

    这也正是上一节中我们所讲的,导致平均负载升高的一个重要因素。

    另外,我们知道, Linux 通过 TLB(Translation Lookaside Buffer)来管理虚拟内存到物理内存的映射关系。

    当虚拟内存更新后,TLB 也需要刷新,内存的访问也会随之变慢。特别是在多处理器系统上,缓存是被多个处理器共享的,

    刷新缓存不仅会影响当前处理器的进程,还会影响共享缓存的其他处理器的进程。

    知道了进程上下文切换潜在的性能问题后,我们再来看,究竟什么时候会切换进程上下文。

    最容易想到的一个时机,就是进程执行完终止了,它之前使用的 CPU 会释放出来,这个时候再从就绪队列里,拿一个新的进程过来运行。

    其实还有很多其他场景,也会触发进程调度,在这里我给你逐个梳理下:

    1.其一,为了保证所有进程可以得到公平调度,CPU 时间被划分为一段段的时间片,这些时间片再被轮流分配给各个进程。

    这样,当某个进程的时间片耗尽了,就会被系统挂起,切换到其它正在等待 CPU 的进程运行。

    2.其二,进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时候进程也会被挂起,并由系统调度其他进程运行。

    3.其三,当进程通过睡眠函数 sleep 这样的方法将自己主动挂起时,自然也会重新调度。

    4.其四,当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行。

    5.最后一个,发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序。

    了解这几个场景是非常有必要的,因为一旦出现上下文切换的性能问题,它们就是幕后凶手。

    线程上下文切换

    线程与进程最大的区别在于, 线程是调度的基本单位,而进程则是资源拥有的基本单位 。说白了,所谓内核中的任务调度,实际上的调度对象是线程;

    而进程只是给线程提供了虚拟内存、全局变量等资源。所以,对于线程和进程,我们可以这么理解: 

    1.当进程只有一个线程时,可以认为进程就等于线程。

    2.当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源。这些资源在上下文切换时是不需要修改的。

    3.另外,线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的。

    这么一来,线程的上下文切换其实就可以分为两种情况:

    第一种, 前后两个线程属于不同进程。此时,因为资源不共享,所以切换过程就跟进程上下文切换是一样。

    第二种,前后两个线程属于同一个进程。此时,因为虚拟内存是共享的,所以在切换时,虚拟内存这些资源就保持不动,只需要切换线程的私有数据、寄存器等不共享的数据。

    到这里你应该也发现了,虽然同为上下文切换,但同进程内的线程切换,要比多进程间的切换消耗更少的资源,而这,也正是多线程代替多进程的一个优势。

    中断上下文切换

    除了前面两种上下文切换,还有一个场景也会切换 CPU 上下文,那就是中断。

     为了快速响应硬件的事件, 中断处理会打断进程的正常调度和执行 ,转而调用中断处理程序,响应设备事件。

    而在打断其他进程时,就需要将进程当前的状态保存下来,这样在中断结束后,进程仍然可以从原来的状态恢复运行。 

    跟进程上下文不同,中断上下文切换并不涉及到进程的用户态。所以,即便中断过程打断了一个正处在用户态的进程,

    也不需要保存和恢复这个进程的虚拟内存、全局变量等用户态资源。中断上下文,其实只包括内核态中断服务程序执行所必需的状态,

    包括 CPU 寄存器、内核堆栈、硬件中断参数等。

     对同一个 CPU 来说,中断处理比进程拥有更高的优先级 ,所以中断上下文切换并不会与进程上下文切换同时发生。

    同样道理,由于中断会打断正常进程的调度和执行,所以大部分中断处理程序都短小精悍,以便尽可能快的执行结束。 

    另外,跟进程上下文切换一样,中断上下文切换也需要消耗 CPU,切换次数过多也会耗费大量的 CPU,甚至严重降低系统的整体性能。

    所以,当你发现中断次数过多时,就需要注意去排查它是否会给你的系统带来严重的性能问题。 

    小结

    1.CPU 上下文切换,是保证 Linux 系统正常工作的核心功能之一,一般情况下不需要我们特别关注。

    2.但过多的上下文切换,会把 CPU 时间消耗在寄存器、内核栈以及虚拟内存等数据的保存和恢复上,从而缩短进程真正运行的时间,导致系统的整体性能大幅下降。

  • 相关阅读:
    ASP.NETRazor注解 @section Scripts{}的使用
    JavaScript快速查找节点
    JavaScript快速查找节点
    javascript中offsetWidth、clientWidth、width、scrollWidth、clientX、screenX、offsetX、pageX
    javascript中offsetWidth、clientWidth、width、scrollWidth、clientX、screenX、offsetX、pageX
    JavaScript substr() 方法
    JavaScript substr() 方法
    5月面试了120多人后,我们总结了6点问题
    5月面试了120多人后,我们总结了6点问题
    Math.floor() 返回小于或等于一个给定数字的最大整数。
  • 原文地址:https://www.cnblogs.com/yg_zhang/p/11523574.html
Copyright © 2011-2022 走看看