描述
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros" Output: 3 Explanation: horse -> rorse (replace 'h' with 'r') rorse -> rose (remove 'r') rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution" Output: 5 Explanation: intention -> inention (remove 't') inention -> enention (replace 'i' with 'e') enention -> exention (replace 'n' with 'x') exention -> exection (replace 'n' with 'c') exection -> execution (insert 'u')
思路:动态规划
这是一个经典的动态规划问题,思路参考斯坦福的课程:http://www.stanford.edu/class/cs124/lec/med.pdf
这里把加2变成加1即可
dp[i][0] = i
;dp[0][j] = j
;dp[i][j] = dp[i - 1][j - 1]
, ifword1[i - 1] = word2[j - 1]
;dp[i][j] = min(dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1)
, otherwise.
class Solution { public: int minDistance(string word1, string word2) { int m = word1.size(), n = word2.size(); vector<vector<int> > dp(m+1, vector<int>(n+1, 0)); for(int i = 1;i<=m;++i) dp[i][0] = i; for(int i = 1;i<=n;++i) dp[0][i] = i; for(int i = 1;i<=m;++i){ for(int j = 1;j<=n;++j){ if(word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1]; else dp[i][j] = min(dp[i-1][j-1], min(dp[i][j-1], dp[i-1][j])) + 1; } } return dp[m][n]; } };