其实也就是包括两个方面的内容:类似于运动模型的位姿估计和扫描匹配,因为需要计算速度,所以时间就有必要了!
1. PoseExtrapolator解决了IMU数据、里程计和位姿信息进行融合的问题。
该类定义了三个队列。
1 std::deque<TimedPose> timed_pose_queue_; 2 std::deque<sensor::ImuData> imu_data_; 3 std::deque<sensor::OdometryData> odometry_data_;
定义了(a)通过位姿计算线速度和角速度对象
Eigen::Vector3d linear_velocity_from_poses_ = Eigen::Vector3d::Zero();
Eigen::Vector3d angular_velocity_from_poses_ = Eigen::Vector3d::Zero();
和(b)通过里程计计算线速度和角速度对象
1 Eigen::Vector3d linear_velocity_from_odometry_ = Eigen::Vector3d::Zero(); 2 Eigen::Vector3d angular_velocity_from_odometry_ = Eigen::Vector3d::Zero();
轮询处理三类消息 IMU消息、里程计消息,激光测距消息。有如下情况:
1)不使用IMU和里程计
只执行AddPose,注意12-15行的代码,$ time{ m{ }} - timed\_pose\_queue\_left[ 1 ight].time ge pose\_queue\_duration\_ $,队列中最前面的数据的时间,当距离当前时间超过一定间隔时执行,作用是将较早时间的数据剔除。接着,根据位姿计算运动速度。对齐IMU数据,里程计数据。
1 void PoseExtrapolator::AddPose(const common::Time time, 2 const transform::Rigid3d& pose) { 3 if (imu_tracker_ == nullptr) { 4 common::Time tracker_start = time; 5 if (!imu_data_.empty()) { 6 tracker_start = std::min(tracker_start, imu_data_.front().time); 7 } 8 imu_tracker_ = 9 common::make_unique<ImuTracker>(gravity_time_constant_, tracker_start); 10 } 11 timed_pose_queue_.push_back(TimedPose{time, pose}); 12 while (timed_pose_queue_.size() > 2 && 13 timed_pose_queue_[1].time <= time - pose_queue_duration_) { 14 timed_pose_queue_.pop_front(); 15 } 16 UpdateVelocitiesFromPoses(); 17 AdvanceImuTracker(time, imu_tracker_.get()); 18 TrimImuData(); 19 TrimOdometryData(); 20 odometry_imu_tracker_ = common::make_unique<ImuTracker>(*imu_tracker_); 21 extrapolation_imu_tracker_ = common::make_unique<ImuTracker>(*imu_tracker_); 22 }
第16行,更新了根据Pose计算的线速度和角速度。
1 void PoseExtrapolator::UpdateVelocitiesFromPoses() 2 { 3 if (timed_pose_queue_.size() < 2) 4 { 5 // We need two poses to estimate velocities. 6 return; 7 } 8 CHECK(!timed_pose_queue_.empty()); 9 const TimedPose& newest_timed_pose = timed_pose_queue_.back(); 10 const auto newest_time = newest_timed_pose.time; 11 const TimedPose& oldest_timed_pose = timed_pose_queue_.front(); 12 const auto oldest_time = oldest_timed_pose.time; 13 const double queue_delta = common::ToSeconds(newest_time - oldest_time); 14 if (queue_delta < 0.001) { // 1 ms 15 LOG(WARNING) << "Queue too short for velocity estimation. Queue duration: " 16 << queue_delta << " ms"; 17 return; 18 } 19 const transform::Rigid3d& newest_pose = newest_timed_pose.pose; 20 const transform::Rigid3d& oldest_pose = oldest_timed_pose.pose; 21 linear_velocity_from_poses_ = 22 (newest_pose.translation() - oldest_pose.translation()) / queue_delta; 23 angular_velocity_from_poses_ = 24 transform::RotationQuaternionToAngleAxisVector( 25 oldest_pose.rotation().inverse() * newest_pose.rotation()) / 26 queue_delta; 27 }
17行执行了PoseExtrapolator::AdvanceImuTracker方法,当不使用IMU数据时,将 angular_velocity_from_poses_ 或者 angular_velocity_from_odometry_ 数据传入了imu_tracker.
1 void PoseExtrapolator::AdvanceImuTracker(const common::Time time, 2 ImuTracker* const imu_tracker) const 3 { 4 CHECK_GE(time, imu_tracker->time()); 5 if (imu_data_.empty() || time < imu_data_.front().time) 6 { 7 // There is no IMU data until 'time', so we advance the ImuTracker and use 8 // the angular velocities from poses and fake gravity to help 2D stability. 9 imu_tracker->Advance(time); 10 imu_tracker->AddImuLinearAccelerationObservation(Eigen::Vector3d::UnitZ()); 11 imu_tracker->AddImuAngularVelocityObservation( 12 odometry_data_.size() < 2 ? angular_velocity_from_poses_ 13 : angular_velocity_from_odometry_); 14 return; 15 } 16 if (imu_tracker->time() < imu_data_.front().time) { 17 // Advance to the beginning of 'imu_data_'. 18 imu_tracker->Advance(imu_data_.front().time); 19 } 20 auto it = std::lower_bound( 21 imu_data_.begin(), imu_data_.end(), imu_tracker->time(), 22 [](const sensor::ImuData& imu_data, const common::Time& time) { 23 return imu_data.time < time; 24 }); 25 while (it != imu_data_.end() && it->time < time) { 26 imu_tracker->Advance(it->time); 27 imu_tracker->AddImuLinearAccelerationObservation(it->linear_acceleration); 28 imu_tracker->AddImuAngularVelocityObservation(it->angular_velocity); 29 ++it; 30 } 31 imu_tracker->Advance(time); 32 }
在执行ExtrapolatePose(),推测某一时刻的位姿的时候,调用了 ExtrapolateTranslation 和 ExtrapolateRotation 方法。
1 transform::Rigid3d PoseExtrapolator::ExtrapolatePose(const common::Time time) { 2 const TimedPose& newest_timed_pose = timed_pose_queue_.back(); 3 CHECK_GE(time, newest_timed_pose.time); 4 if (cached_extrapolated_pose_.time != time) { 5 const Eigen::Vector3d translation = 6 ExtrapolateTranslation(time) + newest_timed_pose.pose.translation(); 7 const Eigen::Quaterniond rotation = 8 newest_timed_pose.pose.rotation() * 9 ExtrapolateRotation(time, extrapolation_imu_tracker_.get()); 10 cached_extrapolated_pose_ = 11 TimedPose{time, transform::Rigid3d{translation, rotation}}; 12 } 13 return cached_extrapolated_pose_.pose; 14 }
可以看到使用的是:(1)旋转,imu_tracker的方位角角的变化量;(2)平移,里程计或者位姿线速度计算的移动量。
1 Eigen::Quaterniond PoseExtrapolator::ExtrapolateRotation( 2 const common::Time time, ImuTracker* const imu_tracker) const { 3 CHECK_GE(time, imu_tracker->time()); 4 AdvanceImuTracker(time, imu_tracker); 5 const Eigen::Quaterniond last_orientation = imu_tracker_->orientation(); 6 return last_orientation.inverse() * imu_tracker->orientation(); 7 } 8 9 Eigen::Vector3d PoseExtrapolator::ExtrapolateTranslation(common::Time time) { 10 const TimedPose& newest_timed_pose = timed_pose_queue_.back(); 11 const double extrapolation_delta = 12 common::ToSeconds(time - newest_timed_pose.time); 13 if (odometry_data_.size() < 2) { 14 return extrapolation_delta * linear_velocity_from_poses_; 15 } 16 return extrapolation_delta * linear_velocity_from_odometry_; 17 }
2)使用IMU和里程计
IMU频率最高,假设消息进入的先后顺序是IMU、里程计,最后是激光消息。
2. RealTimeCorrelativeScanMatcher解决了Scan和子图的扫描匹配的问题。
通过 real_time_correlative_scan_matcher_ 和 ceres_scan_matcher_ 实现的。
1 std::unique_ptr<transform::Rigid2d> LocalTrajectoryBuilder::ScanMatch( 2 const common::Time time, const transform::Rigid2d& pose_prediction, 3 const sensor::RangeData& gravity_aligned_range_data) 4 { 5 std::shared_ptr<const Submap> matching_submap = 6 active_submaps_.submaps().front(); 7 // The online correlative scan matcher will refine the initial estimate for 8 // the Ceres scan matcher. 9 transform::Rigid2d initial_ceres_pose = pose_prediction; 10 sensor::AdaptiveVoxelFilter adaptive_voxel_filter( 11 options_.adaptive_voxel_filter_options()); 12 const sensor::PointCloud filtered_gravity_aligned_point_cloud = 13 adaptive_voxel_filter.Filter(gravity_aligned_range_data.returns); 14 if (filtered_gravity_aligned_point_cloud.empty()) 15 { 16 return nullptr; 17 } 18 if (options_.use_online_correlative_scan_matching()) 19 { 20 real_time_correlative_scan_matcher_.Match( 21 pose_prediction, filtered_gravity_aligned_point_cloud, 22 matching_submap->probability_grid(), &initial_ceres_pose); 23 } 24 25 auto pose_observation = common::make_unique<transform::Rigid2d>(); 26 ceres::Solver::Summary summary; 27 ceres_scan_matcher_.Match(pose_prediction.translation(), initial_ceres_pose, 28 filtered_gravity_aligned_point_cloud, 29 matching_submap->probability_grid(), 30 pose_observation.get(), &summary); 31 return pose_observation; 32 }