zoukankan      html  css  js  c++  java
  • [OpenCV]直线拟合

     OpenCV实现了直线的拟合。

    CV_IMPL void
    cvFitLine( const CvArr* array, int dist, double param,
               double reps, double aeps, float *line )
    {
        cv::AutoBuffer<schar> buffer;
    
        schar* points = 0;
        union { CvContour contour; CvSeq seq; } header;
        CvSeqBlock block;
        CvSeq* ptseq = (CvSeq*)array;
        int type;
    
        if( !line )
            CV_Error( CV_StsNullPtr, "NULL pointer to line parameters" );
    
        if( CV_IS_SEQ(ptseq) )
        {
            type = CV_SEQ_ELTYPE(ptseq);
            if( ptseq->total == 0 )
                CV_Error( CV_StsBadSize, "The sequence has no points" );
            if( (type!=CV_32FC2 && type!=CV_32FC3 && type!=CV_32SC2 && type!=CV_32SC3) ||
                CV_ELEM_SIZE(type) != ptseq->elem_size )
                CV_Error( CV_StsUnsupportedFormat,
                    "Input sequence must consist of 2d points or 3d points" );
        }
        else
        {
            CvMat* mat = (CvMat*)array;
            type = CV_MAT_TYPE(mat->type);
            if( !CV_IS_MAT(mat))
                CV_Error( CV_StsBadArg, "Input array is not a sequence nor matrix" );
    
            if( !CV_IS_MAT_CONT(mat->type) ||
                (type!=CV_32FC2 && type!=CV_32FC3 && type!=CV_32SC2 && type!=CV_32SC3) ||
                (mat->width != 1 && mat->height != 1))
                CV_Error( CV_StsBadArg,
                "Input array must be 1d continuous array of 2d or 3d points" );
    
            ptseq = cvMakeSeqHeaderForArray(
                CV_SEQ_KIND_GENERIC|type, sizeof(CvContour), CV_ELEM_SIZE(type), mat->data.ptr,
                mat->width + mat->height - 1, &header.seq, &block );
        }
    
        if( reps < 0 || aeps < 0 )
            CV_Error( CV_StsOutOfRange, "Both reps and aeps must be non-negative" );
    
        if( CV_MAT_DEPTH(type) == CV_32F && ptseq->first->next == ptseq->first )
        {
            /* no need to copy data in this case */
            points = ptseq->first->data;
        }
        else
        {
            buffer.allocate(ptseq->total*CV_ELEM_SIZE(type));
            points = buffer;
            cvCvtSeqToArray( ptseq, points, CV_WHOLE_SEQ );
    
            if( CV_MAT_DEPTH(type) != CV_32F )
            {
                int i, total = ptseq->total*CV_MAT_CN(type);
                assert( CV_MAT_DEPTH(type) == CV_32S );
    
                for( i = 0; i < total; i++ )
                    ((float*)points)[i] = (float)((int*)points)[i];
            }
        }
    
        if( dist == CV_DIST_USER )
            CV_Error( CV_StsBadArg, "User-defined distance is not allowed" );
    
        if( CV_MAT_CN(type) == 2 )
        {
            IPPI_CALL( icvFitLine2D( (CvPoint2D32f*)points, ptseq->total,
                                     dist, (float)param, (float)reps, (float)aeps, line ));
        }
        else
        {
            IPPI_CALL( icvFitLine3D( (CvPoint3D32f*)points, ptseq->total,
                                     dist, (float)param, (float)reps, (float)aeps, line ));
        }
    }
    

      

     二维的直线拟合?

    /* Takes an array of 2D points, type of distance (including user-defined
    distance specified by callbacks, fills the array of four floats with line
    parameters A, B, C, D, where (A, B) is the normalized direction vector,
    (C, D) is the point that belongs to the line. */
    
    static CvStatus  icvFitLine2D( CvPoint2D32f * points, int count, int dist,
                                   float _param, float reps, float aeps, float *line )
    {
        double EPS = count*FLT_EPSILON;
        void (*calc_weights) (float *, int, float *) = 0;
        void (*calc_weights_param) (float *, int, float *, float) = 0;
        float *w;                   /* weights */
        float *r;                   /* square distances */
        int i, j, k;
        float _line[6], _lineprev[6];
        float rdelta = reps != 0 ? reps : 1.0f;
        float adelta = aeps != 0 ? aeps : 0.01f;
        double min_err = DBL_MAX, err = 0;
        CvRNG rng = cvRNG(-1);
    
        memset( line, 0, 4*sizeof(line[0]) );
    
        switch (dist)
        {
        case CV_DIST_L2:
            return icvFitLine2D_wods( points, count, 0, line );
    
        case CV_DIST_L1:
            calc_weights = icvWeightL1;
            break;
    
        case CV_DIST_L12:
            calc_weights = icvWeightL12;
            break;
    
        case CV_DIST_FAIR:
            calc_weights_param = icvWeightFair;
            break;
    
        case CV_DIST_WELSCH:
            calc_weights_param = icvWeightWelsch;
            break;
    
        case CV_DIST_HUBER:
            calc_weights_param = icvWeightHuber;
            break;
    
        /*case CV_DIST_USER:
            calc_weights = (void ( * )(float *, int, float *)) _PFP.fp;
            break;*/
    
        default:
            return CV_BADFACTOR_ERR;
        }
    
        w = (float *) cvAlloc( count * sizeof( float ));
        r = (float *) cvAlloc( count * sizeof( float ));
    
        for( k = 0; k < 20; k++ )
        {
            int first = 1;
            for( i = 0; i < count; i++ )
                w[i] = 0.f;
    
            for( i = 0; i < MIN(count,10); )
            {
                j = cvRandInt(&rng) % count;
                if( w[j] < FLT_EPSILON )
                {
                    w[j] = 1.f;
                    i++;
                }
            }
    
            icvFitLine2D_wods( points, count, w, _line );
            for( i = 0; i < 30; i++ )
            {
                double sum_w = 0;
    
                if( first )
                {
                    first = 0;
                }
                else
                {
                    double t = _line[0] * _lineprev[0] + _line[1] * _lineprev[1];
                    t = MAX(t,-1.);
                    t = MIN(t,1.);
                    if( fabs(acos(t)) < adelta )
                    {
                        float x, y, d;
    
                        x = (float) fabs( _line[2] - _lineprev[2] );
                        y = (float) fabs( _line[3] - _lineprev[3] );
    
                        d = x > y ? x : y;
                        if( d < rdelta )
                            break;
                    }
                }
                /* calculate distances */
                err = icvCalcDist2D( points, count, _line, r );
                if( err < EPS )
                    break;
    
                /* calculate weights */
                if( calc_weights )
                    calc_weights( r, count, w );
                else
                    calc_weights_param( r, count, w, _param );
    
                for( j = 0; j < count; j++ )
                    sum_w += w[j];
    
                if( fabs(sum_w) > FLT_EPSILON )
                {
                    sum_w = 1./sum_w;
                    for( j = 0; j < count; j++ )
                        w[j] = (float)(w[j]*sum_w);
                }
                else
                {
                    for( j = 0; j < count; j++ )
                        w[j] = 1.f;
                }
    
                /* save the line parameters */
                memcpy( _lineprev, _line, 4 * sizeof( float ));
    
                /* Run again... */
                icvFitLine2D_wods( points, count, w, _line );
            }
    
            if( err < min_err )
            {
                min_err = err;
                memcpy( line, _line, 4 * sizeof(line[0]));
                if( err < EPS )
                    break;
            }
        }
    
        cvFree( &w );
        cvFree( &r );
        return CV_OK;
    }
    

     调用的函数

     1 static CvStatus icvFitLine2D_wods( CvPoint2D32f * points, int _count, float *weights, float *line )
     2 {
     3     double x = 0, y = 0, x2 = 0, y2 = 0, xy = 0, w = 0;
     4     double dx2, dy2, dxy;
     5     int i;
     6     int count = _count;
     7     float t;
     8 
     9     /* Calculating the average of x and y... */
    10 
    11     if( weights == 0 )
    12     {
    13         for( i = 0; i < count; i += 1 )
    14         {
    15             x += points[i].x;
    16             y += points[i].y;
    17             x2 += points[i].x * points[i].x;
    18             y2 += points[i].y * points[i].y;
    19             xy += points[i].x * points[i].y;
    20         }
    21         w = (float) count;
    22     }
    23     else
    24     {
    25         for( i = 0; i < count; i += 1 )
    26         {
    27             x += weights[i] * points[i].x;
    28             y += weights[i] * points[i].y;
    29             x2 += weights[i] * points[i].x * points[i].x;
    30             y2 += weights[i] * points[i].y * points[i].y;
    31             xy += weights[i] * points[i].x * points[i].y;
    32             w += weights[i];
    33         }
    34     }
    35 
    36     x /= w;
    37     y /= w;
    38     x2 /= w;
    39     y2 /= w;
    40     xy /= w;
    41 
    42     dx2 = x2 - x * x;
    43     dy2 = y2 - y * y;
    44     dxy = xy - x * y;
    45 
    46     t = (float) atan2( 2 * dxy, dx2 - dy2 ) / 2;
    47     line[0] = (float) cos( t );
    48     line[1] = (float) sin( t );
    49 
    50     line[2] = (float) x;
    51     line[3] = (float) y;
    52 
    53     return CV_NO_ERR;
    54 }
    icvFitLine2D_wods

    权重计算方法

     1 static void icvWeightL1( float *d, int count, float *w )
     2 {
     3     int i;
     4 
     5     for( i = 0; i < count; i++ )
     6     {
     7         double t = fabs( (double) d[i] );
     8         w[i] = (float)(1. / MAX(t, eps));
     9     }
    10 }
    11 
    12 static void icvWeightL12( float *d, int count, float *w )
    13 {
    14     int i;
    15 
    16     for( i = 0; i < count; i++ )
    17     {
    18         w[i] = 1.0f / (float) sqrt( 1 + (double) (d[i] * d[i] * 0.5) );
    19     }
    20 }
    21 
    22 
    23 static void icvWeightHuber( float *d, int count, float *w, float _c )
    24 {
    25     int i;
    26     const float c = _c <= 0 ? 1.345f : _c;
    27 
    28     for( i = 0; i < count; i++ )
    29     {
    30         if( d[i] < c )
    31             w[i] = 1.0f;
    32         else
    33             w[i] = c/d[i];
    34     }
    35 }
    36 
    37 
    38 static void icvWeightFair( float *d, int count, float *w, float _c )
    39 {
    40     int i;
    41     const float c = _c == 0 ? 1 / 1.3998f : 1 / _c;
    42 
    43     for( i = 0; i < count; i++ )
    44     {
    45         w[i] = 1 / (1 + d[i] * c);
    46     }
    47 }
    48 
    49 static void icvWeightWelsch( float *d, int count, float *w, float _c )
    50 {
    51     int i;
    52     const float c = _c == 0 ? 1 / 2.9846f : 1 / _c;
    53 
    54     for( i = 0; i < count; i++ )
    55     {
    56         w[i] = (float) exp( -d[i] * d[i] * c * c );
    57     }
    58 }

    三维的直线拟合?

    /* Takes an array of 3D points, type of distance (including user-defined
    distance specified by callbacks, fills the array of four floats with line
    parameters A, B, C, D, E, F, where (A, B, C) is the normalized direction vector,
    (D, E, F) is the point that belongs to the line. */
    
    static CvStatus
    icvFitLine3D( CvPoint3D32f * points, int count, int dist,
                  float _param, float reps, float aeps, float *line )
    {
        double EPS = count*FLT_EPSILON;
        void (*calc_weights) (float *, int, float *) = 0;
        void (*calc_weights_param) (float *, int, float *, float) = 0;
        float *w;                   /* weights */
        float *r;                   /* square distances */
        int i, j, k;
        float _line[6]={0,0,0,0,0,0}, _lineprev[6]={0,0,0,0,0,0};
        float rdelta = reps != 0 ? reps : 1.0f;
        float adelta = aeps != 0 ? aeps : 0.01f;
        double min_err = DBL_MAX, err = 0;
        CvRNG rng = cvRNG(-1);
    
        switch (dist)
        {
        case CV_DIST_L2:
            return icvFitLine3D_wods( points, count, 0, line );
    
        case CV_DIST_L1:
            calc_weights = icvWeightL1;
            break;
    
        case CV_DIST_L12:
            calc_weights = icvWeightL12;
            break;
    
        case CV_DIST_FAIR:
            calc_weights_param = icvWeightFair;
            break;
    
        case CV_DIST_WELSCH:
            calc_weights_param = icvWeightWelsch;
            break;
    
        case CV_DIST_HUBER:
            calc_weights_param = icvWeightHuber;
            break;
    
        /*case CV_DIST_USER:
            _PFP.p = param;
            calc_weights = (void ( * )(float *, int, float *)) _PFP.fp;
            break;*/
    
        default:
            return CV_BADFACTOR_ERR;
        }
    
        w = (float *) cvAlloc( count * sizeof( float ));
        r = (float *) cvAlloc( count * sizeof( float ));
    
        for( k = 0; k < 20; k++ )
        {
            int first = 1;
            for( i = 0; i < count; i++ )
                w[i] = 0.f;
    
            for( i = 0; i < MIN(count,10); )
            {
                j = cvRandInt(&rng) % count;
                if( w[j] < FLT_EPSILON )
                {
                    w[j] = 1.f;
                    i++;
                }
            }
    
            icvFitLine3D_wods( points, count, w, _line );
            for( i = 0; i < 30; i++ )
            {
                double sum_w = 0;
    
                if( first )
                {
                    first = 0;
                }
                else
                {
                    double t = _line[0] * _lineprev[0] + _line[1] * _lineprev[1] + _line[2] * _lineprev[2];
                    t = MAX(t,-1.);
                    t = MIN(t,1.);
                    if( fabs(acos(t)) < adelta )
                    {
                        float x, y, z, ax, ay, az, dx, dy, dz, d;
    
                        x = _line[3] - _lineprev[3];
                        y = _line[4] - _lineprev[4];
                        z = _line[5] - _lineprev[5];
                        ax = _line[0] - _lineprev[0];
                        ay = _line[1] - _lineprev[1];
                        az = _line[2] - _lineprev[2];
                        dx = (float) fabs( y * az - z * ay );
                        dy = (float) fabs( z * ax - x * az );
                        dz = (float) fabs( x * ay - y * ax );
    
                        d = dx > dy ? (dx > dz ? dx : dz) : (dy > dz ? dy : dz);
                        if( d < rdelta )
                            break;
                    }
                }
                /* calculate distances */
                if( icvCalcDist3D( points, count, _line, r ) < FLT_EPSILON*count )
                    break;
    
                /* calculate weights */
                if( calc_weights )
                    calc_weights( r, count, w );
                else
                    calc_weights_param( r, count, w, _param );
    
                for( j = 0; j < count; j++ )
                    sum_w += w[j];
    
                if( fabs(sum_w) > FLT_EPSILON )
                {
                    sum_w = 1./sum_w;
                    for( j = 0; j < count; j++ )
                        w[j] = (float)(w[j]*sum_w);
                }
                else
                {
                    for( j = 0; j < count; j++ )
                        w[j] = 1.f;
                }
    
                /* save the line parameters */
                memcpy( _lineprev, _line, 6 * sizeof( float ));
    
                /* Run again... */
                icvFitLine3D_wods( points, count, w, _line );
            }
    
            if( err < min_err )
            {
                min_err = err;
                memcpy( line, _line, 6 * sizeof(line[0]));
                if( err < EPS )
                    break;
            }
        }
    
        // Return...
        cvFree( &w );
        cvFree( &r );
        return CV_OK;
    }
    

      

     调用的方法

      1 static CvStatus icvFitLine3D_wods( CvPoint3D32f * points, int count, float *weights, float *line )
      2 {
      3     int i;
      4     float w0 = 0;
      5     float x0 = 0, y0 = 0, z0 = 0;
      6     float x2 = 0, y2 = 0, z2 = 0, xy = 0, yz = 0, xz = 0;
      7     float dx2, dy2, dz2, dxy, dxz, dyz;
      8     float *v;
      9     float n;
     10     float det[9], evc[9], evl[3];
     11 
     12     memset( evl, 0, 3*sizeof(evl[0]));
     13     memset( evc, 0, 9*sizeof(evl[0]));
     14 
     15     if( weights )
     16     {
     17         for( i = 0; i < count; i++ )
     18         {
     19             float x = points[i].x;
     20             float y = points[i].y;
     21             float z = points[i].z;
     22             float w = weights[i];
     23 
     24 
     25             x2 += x * x * w;
     26             xy += x * y * w;
     27             xz += x * z * w;
     28             y2 += y * y * w;
     29             yz += y * z * w;
     30             z2 += z * z * w;
     31             x0 += x * w;
     32             y0 += y * w;
     33             z0 += z * w;
     34             w0 += w;
     35         }
     36     }
     37     else
     38     {
     39         for( i = 0; i < count; i++ )
     40         {
     41             float x = points[i].x;
     42             float y = points[i].y;
     43             float z = points[i].z;
     44 
     45             x2 += x * x;
     46             xy += x * y;
     47             xz += x * z;
     48             y2 += y * y;
     49             yz += y * z;
     50             z2 += z * z;
     51             x0 += x;
     52             y0 += y;
     53             z0 += z;
     54         }
     55         w0 = (float) count;
     56     }
     57 
     58     x2 /= w0;
     59     xy /= w0;
     60     xz /= w0;
     61     y2 /= w0;
     62     yz /= w0;
     63     z2 /= w0;
     64 
     65     x0 /= w0;
     66     y0 /= w0;
     67     z0 /= w0;
     68 
     69     dx2 = x2 - x0 * x0;
     70     dxy = xy - x0 * y0;
     71     dxz = xz - x0 * z0;
     72     dy2 = y2 - y0 * y0;
     73     dyz = yz - y0 * z0;
     74     dz2 = z2 - z0 * z0;
     75 
     76     det[0] = dz2 + dy2;
     77     det[1] = -dxy;
     78     det[2] = -dxz;
     79     det[3] = det[1];
     80     det[4] = dx2 + dz2;
     81     det[5] = -dyz;
     82     det[6] = det[2];
     83     det[7] = det[5];
     84     det[8] = dy2 + dx2;
     85 
     86     /* Searching for a eigenvector of det corresponding to the minimal eigenvalue */
     87 #if 1
     88     {
     89     CvMat _det = cvMat( 3, 3, CV_32F, det );
     90     CvMat _evc = cvMat( 3, 3, CV_32F, evc );
     91     CvMat _evl = cvMat( 3, 1, CV_32F, evl );
     92     cvEigenVV( &_det, &_evc, &_evl, 0 );
     93     i = evl[0] < evl[1] ? (evl[0] < evl[2] ? 0 : 2) : (evl[1] < evl[2] ? 1 : 2);
     94     }
     95 #else
     96     {
     97         CvMat _det = cvMat( 3, 3, CV_32F, det );
     98         CvMat _evc = cvMat( 3, 3, CV_32F, evc );
     99         CvMat _evl = cvMat( 1, 3, CV_32F, evl );
    100 
    101         cvSVD( &_det, &_evl, &_evc, 0, CV_SVD_MODIFY_A+CV_SVD_U_T );
    102     }
    103     i = 2;
    104 #endif
    105     v = &evc[i * 3];
    106     n = (float) sqrt( (double)v[0] * v[0] + (double)v[1] * v[1] + (double)v[2] * v[2] );
    107     n = (float)MAX(n, eps);
    108     line[0] = v[0] / n;
    109     line[1] = v[1] / n;
    110     line[2] = v[2] / n;
    111     line[3] = x0;
    112     line[4] = y0;
    113     line[5] = z0;
    114 
    115     return CV_NO_ERR;
    116 }
    icvFitLine3D_wods

    参考文献:

    OpenCV 学习(直线拟合)

  • 相关阅读:
    九省联考2018 IIIDX
    WC2020 猜数游戏
    Gym101821D Search Engine
    Gym102586B Evacuation
    Gym102576D Clique
    UOJ498 新年的追逐战
    LOJ6703 小 Q 的序列
    Codechef A Leisurely Journey
    LG5050 多项式多点求值 和 LG5158 多项式快速插值
    PE427 n-sequences 和 ZJOI2020 抽卡
  • 原文地址:https://www.cnblogs.com/yhlx125/p/9240548.html
Copyright © 2011-2022 走看看