zoukankan      html  css  js  c++  java
  • Random-Forest-Python

    1. 近期目标,实现随机森林进行点云分类

      1)学习阶段:

    【干货】Kaggle 数据挖掘比赛经验分享

    Kaggle Machine Learning Competition: Predicting Titanic Survivors

    Kaggle Titanic 生存预测 -- 详细流程吐血梳理 

    机器学习实战之Kaggle_Titanic预测

    https://www.codeproject.com/Articles/1197167/Random-Forest-Python

    https://blog.csdn.net/hexingwei/article/details/50740404 

      2)实践阶段:

      (1)原始点云字段(X,Y,Z,density,curvature,Classification),利用点云的高程Z,密度曲率进行train和分类。分类结果很差就是了。

        需要考虑哪些特征对分类结果的影响比较大?用什么样的点云特征更好,特征工程问题?

     1 # -*- coding: utf-8 -*-
     2 """
     3 Created on Sat Nov 10 10:12:02 2018
     4 @author: yhexie
     5 """
     6 import numpy as np
     7 import pandas as pd
     8 from sklearn import model_selection
     9 from sklearn.ensemble import RandomForestClassifier
    10  
    11 df = pd.read_csv('C:/Users/yhexie/.spyder-py3/pointcloudcls/train_pcloud2.csv', header=0)
    12 x_train = df[['Z','Volume','Ncr']]
    13 y_train = df.Classification
    14  
    15 df2 = pd.read_csv('C:/Users/yhexie/.spyder-py3/pointcloudcls/test_pcloud2.csv', header=0)
    16 x_test = df2[['Z','Volume','Ncr']]
    17  
    18 clf = RandomForestClassifier(n_estimators=10)
    19 clf.fit(x_train, y_train)
    20 clf_y_predict = clf.predict(x_test)
    21  
    22 data_arry=[]
    23 data_arry.append(df2.X)
    24 data_arry.append(df2.Y)
    25 data_arry.append(df2.Z)
    26 data_arry.append(clf_y_predict)
    27  
    28 np_data = np.array(data_arry)
    29 np_data = np_data.T
    30 np.array(np_data)
    31 save = pd.DataFrame(np_data, columns = ['X','Y','Z','Classification'])
    32 save.to_csv('C:/Users/yhexie/.spyder-py3/pointcloudcls/predict_pcloud2.csv',index=False,header=True)  #index=False,header=False表示不保存行索引和列标题
    View Code

      (2)对训练集进行split,用75%的数据训练,25%的数据验证模型的拟合精度和泛化能力。

        a. 增加定性特征,进行dummy处理。

      目前采用Z值和8个特征相关的点云特征进行分类,点云近邻搜索半径2.5m

     1 # -*- coding: utf-8 -*-
     2 """
     3 Created on Wed Nov 28 10:54:48 2018
     4 
     5 @author: yhexie
     6 """
     7 
     8 import numpy as np
     9 import pandas as pd
    10 import matplotlib.pyplot as plt
    11 from sklearn import model_selection
    12 from sklearn.ensemble import RandomForestClassifier
    13 
    14 df = pd.read_csv('C:/Users/yhexie/.spyder-py3/pointcloudcls/train_pc.csv', header=0)
    15 x_train = df[['Z','Linearity',    'Planarity','Scattering','Omnivariance',    'Anisotropy',
    16               'EigenEntropy','eig_sum'    ,'changeOfcurvature']]
    17 y_train = df.Classification
    18 
    19 from sklearn.cross_validation import train_test_split
    20 train_data_X,test_data_X,train_data_Y,test_data_Y = train_test_split(x_train, y_train, test_size=0.25, random_state=33)
    21 
    22 df2 = pd.read_csv('C:/Users/yhexie/.spyder-py3/pointcloudcls/test_pc.csv', header=0)
    23 x_test = df2[['Z','Linearity',    'Planarity','Scattering','Omnivariance',    'Anisotropy',
    24               'EigenEntropy','eig_sum'    ,'changeOfcurvature']]
    25 
    26 clf = RandomForestClassifier(n_estimators=10)
    27 clf.fit(train_data_X, train_data_Y)
    28 
    29 print('Accuracy on training set:{:.3f}:'.format(clf.score(train_data_X,train_data_Y)))
    30 print('Accuracy on training set:{:.3f}:'.format(clf.score(test_data_X,test_data_Y)))
    31 print('Feature inportances:{}'.format(clf.feature_importances_))
    32 n_features=9
    33 plt.barh(range(n_features),clf.feature_importances_,align='center')
    34 plt.yticks(np.arange(n_features),['Z','Linearity',    'Planarity','Scattering','Omnivariance',    'Anisotropy',
    35               'EigenEntropy','eig_sum'    ,'changeOfcurvature'])
    36 plt.xlabel('Feature importance')
    37 plt.ylabel('Feature')
    38 
    39 clf_y_predict = clf.predict(x_test)
    40 
    41 data_arry=[]
    42 data_arry.append(df2.X)
    43 data_arry.append(df2.Y)
    44 data_arry.append(df2.Z)
    45 data_arry.append(clf_y_predict)
    46 
    47 np_data = np.array(data_arry)
    48 np_data = np_data.T
    49 np.array(np_data)
    50 save = pd.DataFrame(np_data, columns = ['X','Y','Z','Classification']) 
    51 save.to_csv('C:/Users/yhexie/.spyder-py3/pointcloudcls/predict_pcloud2.csv',index=False,header=True)  #index=False,header=False表示不保存行索引和列标题
    View Code

      计算结果:可以看到在测试集上的结果还是很差

    1 Accuracy on training set:0.984:
    2 Accuracy on test set:0.776:

     特征重要程度:


    新的测试:

    Accuracy on training set:0.994:
    Accuracy on training set:0.891:
    Feature inportances:[0.02188956 0.02742479 0.10124688 0.01996966 0.1253002 0.02563489
    0.03265565 0.100919 0.15808224 0.01937961 0.02727676 0.05498342
    0.0211147 0.02387439 0.01900164 0.023478 0.02833916 0.0302441
    0.02249598 0.06629199 0.05039737]

    感觉Z值的重要程度太高了。房屋分类结果应该是很差,绿色的很多被错误分类了。

    问题:目前训练集中的每个类别的样本数目并不相同,这个对训练结果有没有影响?

  • 相关阅读:
    Tomcat报错:Failed to start component [StandardEngine[Catalina].StandardHost[localhost].StandardContext[/JFreeChartTest]]
    Md5 加密,加盐值
    ajax 分页 步骤和代码
    【每天学习一点点】numpy中的reshape中参数为-1
    smali文件语法参考
    google zxing 二维码扫描(android client分析)
    cygwin编译ffmpeg移植到android平台问题集锦
    Sequoyah 本机开发Native Development: Invalid path for NDK(路径无效) 解决方案
    优化模式--数据局部性
    程序猿,你也配吃10元的盒饭?
  • 原文地址:https://www.cnblogs.com/yhlx125/p/9588958.html
Copyright © 2011-2022 走看看