zoukankan      html  css  js  c++  java
  • 【公式编辑测试】两类斯特林数的对偶

    喜闻乐见的公式编辑测试环节,联系太多了,所以肯定写不完

    联系下降幂,上升幂,幂

    [(x)^n=x(x+1)...(x+n-1) \ (x)_n=x(x-1)...(x-n+1) ]

    [sumlimits_{k=1}^{n}S_1(n,k)x^k=(x)^n \ sumlimits_{k=1}^{n}(-1)^{n-k}S_1(n,k)x^k=(x)_n \ sumlimits_{k=1}^{n}S_2(n,k)(x)_k=(x)_n=x^n ]

    递推关系对偶

    [S_1(n,k)=(n-1)cdot S_1(n-1,k)+S_1(n-1,k-1) \ S_1(0,0)=1 \ S_1(n,0)=S_1(0,n)=0 for ngeq 1 ]

    [S_2(n,k)=kcdot S_2(n-1,k)+S_2(n-1,k-1)\ S_2(0,0)=1 \ S_2(n,0)=S_2(0,n)=0 for ngeq 1 ]

    生成函数对偶

    [sumlimits_{n=0}^{infty}S_2(n,k)frac{x^n}{n!}=frac{(e^x-1)^k}{k!} ]

    [sumlimits_{n=0}^{infty}S_1(n,k)frac{x^n}{n!}=frac{(ln(x+1))^k}{k!} ]

    矩阵

    let

    [ A=(a_{ij})_{n imes n}=[ (-1)^{i-j}S_1(i,j) ]_{n imes n}\ B=(b_{ij})_{n imes n}=(S_2(i,j))_{n imes n} ]

    then

    [AB=BA=I ]

    注:这里需要对(i>n)的斯特林数做定义,具体的定义方式我这里找不到了

    还有一些

    (A(x),B(x))分别为({a_n}_{n=0}^{infty})({b_n}_{n=0}^{infty})的指数生成函数,以下三命题等价

    [forall ngeq 0 , b_n=sumlimits_{i=0}^{infty}S_2(n,i)a_i\ forall ngeq 0 , a_n=sumlimits_{i=0}^{infty}(-1)^{n-i}S_1(n,i)b_i\ B(x)=A(e^x-1) quad ext{i.e.} quad A(x)=B( ln(1+x) ) ]

    [ ]

  • 相关阅读:
    ZOJ
    ZOJ
    ZOJ
    ZOJ
    HDU
    HDU
    CF 429B B.Working out (四角dp)
    HDU
    ScrollView 里的 EditText 与输入法的用例
    Windows hosts (使用方法 && 不定期更新)
  • 原文地址:https://www.cnblogs.com/yhm138/p/13655950.html
Copyright © 2011-2022 走看看