zoukankan      html  css  js  c++  java
  • 借助leetcode题目来了解BFS和DFS

    广度优先和深度优先搜索

    前言

    看着这两个搜索的前提的是读者具备图这一数据结构的基本知识,这些可以直接百度一波就了解了。图也像树一样,遍历具有很多的学问在里面,下面我将借用leetcode的题目讲解一下,虽然是图的遍历,但是借助树好像讲的更见浅白一点,不好的地方多指教。

    广度优先搜索(BFS)

    -对于树而言,就是一种层层遍历的感觉,在实现的过程中,常常借助的是辅助队列来实现,也就是借助先进先出的特性来实现的。下图来看。用BFS的话,就是3-9-20-15-7的结果。

    整体实现来说,就是遍历root再来遍历左右子树,不过与DFS区别的是,这里是借助先进先出的特点,也就是要将前面的先排列出来,不用走到叶子结点才输出。一句话简单来说,BFS就是队列,入队列,出队列;

    下面是借助leetcode的题目来巩固这个知识点,上面的图也是这个题的。题目要求层层从左往右遍历结点。

      class Solution {
            public int[] levelOrder(TreeNode root) {
                //特殊情况
                if(root == null){
                    return new int[0];
                }
                //用队列来实现广度优先搜索
                ArrayList<Integer> list = new ArrayList<>();
                Queue<TreeNode> queue = new LinkedList<>();
                queue.add(root);
                while(!queue.isEmpty()){
                    // 出列,这里的顺序就是先进先出,层层逐个遍历
                    TreeNode node = queue.poll();
                    list.add(node.val);
                    // 逐个入列,辅助队列也是BFS的关键点
                    if(node.left != null){
                        queue.add(node.left);
                    }
                    if(node.right != null){
                        queue.add(node.right);
                    }
    
                }
    			// 这样转换会慢一点
                // int[] res = list.stream().mapToInt(Integer::valueOf).toArray();
                int[] res = new int[list.size()];
                for(int i = 0; i < list.size();i++){
                    res[i] = list.get(i);
                }
                //题目要求返回的是int[]
                return res;
    
    
    
            }
        }
    
    
    }
    

    上面这道可以变形成输出结果不一样,也就是剑指offer中的后面两道-面试题31 - II. 从上到下打印二叉树和面试32题。

    31题是要求输出的结果是不同数组的集合,每层的结点作为一个数组,解决代码如下

    class Solution {
        List<List<Integer>> res  = new LinkedList<>();
        public List<List<Integer>> levelOrder(TreeNode root) {
               if(root == null){
                    return res;
                }
                //用队列来实现广度优先搜索      
                Queue<TreeNode> queue = new LinkedList<>();
                queue.add(root);
                while(!queue.isEmpty()){
                    ArrayList<Integer> list = new ArrayList<>();
                    //用队列的长度来做,这里在for循环中,长度一直在变,所以要先将其取出来
                    //关键点:主要思想在于用每次的队列长度来 判定这一层的结点有多少
                    //正如一开始只有一个根结点,所以长度等于一,只需执行一次添加list
                    int size = queue.size();
                    for(int i = 0; i < size; i++){
                    // 出列,这里的顺序就是先进先出,层层逐个遍历
                    TreeNode node = queue.poll();
                    //这道题要求每层出一个数组
                    list.add(node.val);
                    // 逐个入列,辅助队列也是BFS的关键点
                    if(node.left != null){ queue.add(node.left);}
                    if(node.right != null){queue.add(node.right);}
                    }
                    //每层加完就添加到结果里面
                    res.add(list);
    
                }
    			
                //题目要求返回的是List<List<>>
                return res;
    
    
    
            }
    
        }
    

    32题有和上面不一样的地方在于,第一行按照从左到右的顺序打印,第二层按照从右到左的顺序打印,第三行再按照从左到右的顺序打印,其他行以此类推。就是奇数偶数层不一样的遍历方式。可以通过借助一个布尔常量来实现。

    class Solution {
      List<List<Integer>> res  = new LinkedList<>();
        public List<List<Integer>> levelOrder(TreeNode root) {
               if(root == null){
                    return res;
                }
                //用队列来实现广度优先搜索      
                Queue<TreeNode> queue = new LinkedList<>();
                queue.add(root);
                boolean flag = true;
                while(!queue.isEmpty()){
                    //这道题有实现头插法,为了高效,使用链表数组
                    List<Integer> list = new LinkedList<>();
                    //用队列的长度来做,这里在for循环中,长度一直在变,所以要先将其取出来
                    int size = queue.size();
                    for(int i = 0; i < size; i++){
                    // 出列,这里的顺序就是先进先出,层层逐个遍历
                    TreeNode node = queue.poll();
                    //关键点:这道题要求每层出一个数组,而且奇数行和偶数不一样
                    //奇数行是从左往右,偶数行是从右往左走
                    //借助一个布尔类型来完成
                    if(flag){
                        list.add(node.val);
                    }else{
                        //前面开始插
                        list.add(0,node.val);
                    }
                    // 逐个入列,辅助队列也是BFS的关键点
                    if(node.left != null){ queue.add(node.left);}
                    if(node.right != null){queue.add(node.right);}
                    }
    				//每次遍历完一行便开始更换布尔类型
                    flag = !flag;
                    //每层加完就添加到结果里面
                    res.add(list);
    
                }
    			
                //题目要求返回的是List<List<>>a
                return res;
    
        }
    }
    

    深度优先搜索DFS

    讲到DFS,很容易想到递归,没错它就是借助了递归的思想。在图中的描述是:深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点

    上面的图即是该题,题目要求输入一个目标sum,打印出二叉树中节点值的和为输入整数的所有路径。从树的根节点开始往下一直到叶节点所经过的节点形成一条路径。

     比如给出22,则返回下面
     {
     [5,4,11,2],
     [5,8,4,5]
     }
    
    /**
    leetcode 二叉树中和为某一值的路径(剑指offer34题)
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    class Solution {
        LinkedList<List<Integer>> res = new LinkedList<>();
        LinkedList<Integer> path = new LinkedList<>();
        public List<List<Integer>> pathSum(TreeNode root, int sum) {
            // 有遍历 有递归
            recur(root,sum);
            //返回的是链表的链表结果
            return res;
        }
    
        public void recur(TreeNode root,int sum){
    //        递归的终止条件
            if (root == null){
                return;
            }
            path.add(root.val);
            sum -= root.val;
            //找到了最后叶子结点,且可以满足sum的和要求,便将该结果添加进去res
            if (sum == 0&& root.left ==null&&root.right == null){
                //这里需要添加新的对象
                res.add(new LinkedList<>(path));
            }
    //        左子树递归
            recur(root.left,sum);
    //        右子树递归
            recur(root.right,sum);
    //        删掉上一个结点,这一步是比较难理解的,这一步有点回溯的感觉,就是你找到最后不符合要求的结点,你要返回到上一步,重新走下去。这一步是左右子树都递归完成后就会执行的
            path.removeLast();
    
        }
    }
    

    最后

    这里的DFS还没讲完,只是单纯讲了这一道,后面再补上一些题目来写。

    补上一道

    leetcode104-求深度

    这个题是要求求树的深度,可以很好得对比BFS和DFS的做法,实例如下。

    直接上代码,格式和模板都和上面的差不多。

       public int maxDepth(TreeNode root) {
    // bfs
           //时间复杂度也为O(n)
    if(root == null){
        return 0;
    }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        int num = 0;
        while(!queue.isEmpty()){
            num++;
          //借助队列来完成
            int size = queue.size();
            for(int i = 0; i < size; i++){
                  TreeNode node = queue.poll();
                if(node.left != null){
                    queue.add(node.left);
                }
                if(node.right != null){
                    queue.add(node.right);
                }
            }
        }
        return num;
    
        }
    
    
        //Dfs 只有这两行。
    // 时间复杂度为O(n),
           if(root == null){
               return 0;
            }else{
               return Math.max(maxDepth(root.left),maxDepth(root.right))+1;
            }
    
  • 相关阅读:
    Python之路【第十六篇】:Django【基础篇】
    pyCharm最新2018激活码
    python selenium firefox使用
    IO编程(2)-操作文件和目录
    IO编程(1)-文件读写
    错误、调试和测试(4)-文档测试
    错误、调试和测试(3)-单元测试
    错误、调试和测试(2)-调试
    错误、调试和测试(1)-错误处理
    面向对象高级编程(5)-使用元类
  • 原文地址:https://www.cnblogs.com/yhycoder/p/12786423.html
Copyright © 2011-2022 走看看