Recently Luba learned about a special kind of numbers that she calls beautiful numbers. The number is called beautiful iff its binary representation consists of k + 1 consecutive ones, and then k consecutive zeroes.
Some examples of beautiful numbers:
- 12 (110);
- 1102 (610);
- 11110002 (12010);
- 1111100002 (49610).
More formally, the number is beautiful iff there exists some positive integer k such that the number is equal to (2k - 1) * (2k - 1).
Luba has got an integer number n, and she wants to find its greatest beautiful divisor. Help her to find it!
The only line of input contains one number n (1 ≤ n ≤ 105) — the number Luba has got.
Output one number — the greatest beautiful divisor of Luba's number. It is obvious that the answer always exists.
3
1
992
496
题意:100000 以内 有几个 美丽的数字 , 分别是 :
1(2)->1(10) 110(2)->6(10) 11100(2)->28(10) 1111000(2) -> 120(10) 111110000(2)->496(10) 11111100000(2) -> 2016(10)
1111111000000(2) -> 8128(10) 111111110000000(2) -> 32640(10) 11111111100000000(2) -> 130816(10)
注意看题 , 题目要的是 :“满足 是 n 的 除数 同时 是美丽数字 两个条件的最大数字” ,
/* 预处理 */ #include<stdio.h> #include<string.h> #include <iostream> #include<algorithm> using namespace std; #define maxn 200 int num[maxn] ; void init(){ num[1] = 1 ; num[2] = 6 ; num[3] = 28 ; num[4] = 120 ; num[5] = 496 ; num[6] = 2016 ; num[7] = 8128 ; num[8] = 32640 ; num[9] = 130816 ; } int main(){ int n ; init() ; while(~scanf("%d" , &n)){ for(int i=9 ; i>0 ; i--){ if(num[i]<=n&&(n%num[i] == 0 )){ printf("%d " , num[i]) ; break ; } } } return 0 ; }
/* 快速幂判断美丽数字 */ #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std ; #define LL long long // 快速幂 LL pow_x(int k ) { LL result = 1 ; LL a = 2 ; while(k) { if(k&1) { result = result * a ; } a = a*a ; k=k/2 ; } return result ; } int main() { int n ; while(~scanf("%d" , &n)) { bool flag = false ; int result ; for(int i=n ; i>0 ; i--) { for(int k = 1 ; ; k++ ) { if((pow_x(k)-1)*pow_x(k-1) == i ) { if(n%i==0) { result = i ; flag = true ; break ; } } if((pow_x(k)-1)*pow_x(k-1) > i ) { break ; } } if(flag) { break; } } printf("%d " , result) ; } return 0 ; }