zoukankan      html  css  js  c++  java
  • 转 Solr vs. Elasticsearch谁是开源搜索引擎王者

    转 https://www.cnblogs.com/xiaoqi/p/6545314.html

    Solr vs. Elasticsearch谁是开源搜索引擎王者

    当前是云计算和数据快速增长的时代,今天的应用程序正以PB级和ZB级的速度生产数据,但人们依然在不停的追求更高更快的性能需求。随着数据的堆积,如何快速有效的搜索这些数据,成为对后端服务的挑战。本文,我们将比较业界两个最流行的开源搜索引擎,Solr和ElasticSearch。两者都建立在Apache Lucene开源平台之上,它们的主要功能非常相似,但是在部署的易用性,可扩展性和其他功能方面也存在巨大差异。

    关于Apache Solr

    Apache Solr基于业界大名鼎鼎的java开源搜索引擎Lucene,Lucene更多的是一个软件包,还不能称之为搜索引擎,而solr则完成对lucene的封装,是一个真正意义上的搜索引擎框架。在过去的十年里,solr发展壮大,拥有广泛的用户群体。solr提供分布式索引、分片、副本集、负载均衡和自动故障转移和恢复功能。如果正确部署,良好管理,solr就能够成为一个高可靠、可扩展和高容错的搜索引擎。不少互联网巨头,如Netflix,eBay,Instagram和Amazon(CloudSearch)均使用Solr

    solr的主要特点:

    • 全文索引
    • 高亮
    • 分面搜索
    • 实时索引
    • 动态聚类
    • 数据库集成
    • NoSQL特性和丰富的文档处理(例如Word和PDF文件)

    关于Elasticsearch

    与solr一样,Elasticsearch构建在Apache Lucene库之上,同是开源搜索引擎。Elasticsearch在Solr推出几年后才面世的,通过REST和schema-free(不需要预先定义 Schema,solr是需要预先定义的)的JSON文档提供分布式、多租户全文搜索引擎。并且官方提供Java,Groovy,PHP,Ruby,Perl,Python,.NET和Javascript客户端。

    分布式搜索引擎包含可以华为为分片(shard)的索引,每一个分片可以有多个副本(replicas)。每个Elasticsearch节点可以有一个或多个分片,其引擎既同时作为协调器(coordinator ),将操作转发给正确的分片。

    Elasticsearch可扩展为准实时搜索引擎。其中一个关键特性是多租户功能,可根据不同的用途分索引,可以同时操作多个索引。

    Elasticsearch主要特性:

    • 分布式搜索
    • 多租户
    • 查询统计分析
    • 分组和聚合

    热度对比

    在开始比较前,我们可以查看两者在google中的搜索热度,可以看出在2013年后,Elasticsearch与Solr相比具有很大的吸引力,但这并不意味着Apache Solr已经死了。虽然不少人不认可,但Solr仍然是最流行的搜索引擎之一,具有强大的开源社区支持。

    安装与配置

    相对来说,Elasticsearch更易于安装,与Solr相比非常轻量级。 Solr的分发软件包大小的当前版本(6.4.2)大约为150 MB,而Elasticsearch分发软件包大小的当前版本(5.2.2)仅为32.2MB。

    但是,如果Elasticsearch管理不好,这种易于部署和使用可能会成为一个问题。基于JSON的配置很容易,但如果你想为文件中的每个配置指定注释,那么它不适合你。Solr也提供了Rest API,可以通过集合API创建自定义分片集合,记录聚类算法和执行自定义分片。

    总的来说,如果你的应用程序使用JSON,那么Elasticsearch是一个更好的选择。否则,使用Solr,因为它的schema.xml和solrconfig.xml有很好的文档。

    索引和搜索

    数据源

    Solr接受来自不同来源的数据,包括XML文件,逗号分隔符(CSV)文件和从数据库中的表提取的数据以及常见的文件格式(如Microsoft Word和PDF)。

    Elasticsearch还支持其他来源的数据,例如ActiveMQ,AWS SQS,DynamoDB(Amazon NoSQL),FileSystem,Git,JDBC,JMS,Kafka,LDAP,MongoDB,neo4j,RabbitMQ,Redis,Solr和Twitter。还有各种插件可用。

    搜索

    Solr专注于文本搜索,而Elasticsearch则常用于查询、过滤和分组分析统计,Elasticsearch背后的团队也努力让这些查询更为高效。因此当比较两者时,对那些不仅需要文本搜索,同时还需要复杂的时间序列搜索和聚合的应用程序而言,毫无疑问Elasticsearch是最佳选择。

    索引

    两者都支持使用停用词和同义词来匹配文档。

    在Solr中,索引间进行join必须是单个分片和其他节点上的副本集进行关联来搜索文档间关系(例如SQL连接)。而Elasticsearch提供更高效的has_children和top_children查询来检索这样的相关文档

    可扩展性和分布式

    搜索引擎需要处理数以百万级的文档,基于此搜索引擎应该是可复制的,模块化的和可扩展的,支持集群和分布式架构。

    专为云而设计

    Elasticsearch非常易于扩展,拥有足够多的需要大集群的使用案例。

    Solr 基于Apache ZooKeeper也实现了类似ES的分布式部署模式。ZooKeeper是成熟和广泛使用的独立应用程序。

    相对比,Elasticsearch有一个内置的类似ZooKeeper的名为Zen的组件,通过内部的协调机制来维护集群状态。

    可以说Elasticsearch是转为云而设计,是分布式首选。

    分片拆分和再平衡

    shards是luence索引的分区单元,solr和elasticsearch均使用。你可以通过在集群中的不同计算机上运行shard来分发索引。随着SolrCloud的引入,Solr开始支持shard拆分,这允许您通过拆分现有shard来添加更多shard。相比之下,ElasticSearch仍然不支持这一点,事实上,实际上阻止了这种做法。ES通过向设置中添加更多计算机,可以使用自动碎片平衡功能。相比之下,Solr允许添加分片(使用隐式路由时)或分割(使用复合ID时),但不能删除分片。它允许您增加副本。在Elasticsearch中,默认情况下每个索引具有五个分片。它不允许您更改主分片的数量,但它允许您增加副本的数量。分片再平衡对于水平扩容非常有用。当添加新机器时,它将自动重新平衡不同机器中可用的分片。

    社区

    Solr有一个广泛的开源社区。任何人都可以贡献给Solr,新的Solr开发人员或代码提交者只能根据功能选择。 Elasticsearch在技术上是开源的,但不完全。所有贡献者都可以访问源代码,用户可以进行更改并提供。但最终的变化由Elastic(运行Elasticsearch和其他软件的公司)的员工确认和完成。因此,Elasticsearch更多地由单个公司驱动,而不是整个社区。

    Solr贡献者和提交者跨越多个组织,而Elasticsearch提交者仅来自Elastic。还有人指出,Solr的强大社区有一个健康的项目管道和许多知名公司参与。这些成员还通过在整个开发和工程过程中做出贡献来投资该平台。

    两者都有很好的用户群和丰富的开发人员社区,但ElasticSearch相较于Solr更新。 Solr已经存在了更长的时间,所以它的生态系统是发达的,拥有更大的用户群。

    文档

    Solr在这里得分很高。它是一个非常有据可查的产品,具有清晰的示例和API用例场景。 Elasticsearch的文档组织良好,但它缺乏好的示例和清晰的配置说明。

    选Solr 还是 Elasticsearch?

    通过上面的对比,很难确定谁是最终赢家。其实,无论选择Solr还是Elasticsearch,你首先需要了解您的用户场景和未来的需求。我们来总结一下:

    请记住:

    • Elasticsearch由于其易用性而在较新的开发人员中更受欢迎
    • 但是如果你已经在使用solr了,请继续使用它,因为迁移到Elasticsearch并不会带来具体的优势
    • 如果您需要它来处理分析查询以及搜索文本,Elasticsearch是更好的选择,特别是收集日志,做分析处理(参考前面发的ELK 安装使用http://www.cnblogs.com/xiaoqi/p/elk-part1.html)

    总之,两者都是功能丰富的搜索引擎,并且或多或少地给出相同的性能,只要它们被设计和实施得很好。 

    本文主要内容为翻译http://logz.io/blog/solr-vs-elasticsearch/,感谢作者,感谢谷歌翻译!

  • 相关阅读:
    Kinect 开发 —— 硬件设备解剖
    Kinect 开发 —— 引言
    (转)OpenCV 基本知识框架
    OpenCV —— 摄像机模型与标定
    OpenCV —— 跟踪与运动
    OpenCV —— 图像局部与分割(二)
    OpenCV —— 图像局部与部分分割(一)
    OpenCV —— 轮廓
    OpenCV —— 直方图与匹配
    OpenCV —— 图像变换
  • 原文地址:https://www.cnblogs.com/yibutian/p/9506984.html
Copyright © 2011-2022 走看看