zoukankan      html  css  js  c++  java
  • 论线性回归中残差图的重要性

    Y1    X1    Y2    X2    Y3    X3    Y4    X4
    8.04    10    9.14    10    7.46    10    6.58    8
    6.95    8    8.14    8    6.77    8    5.76    8
    7.58    13    8.74    13    12.74    13    7.71    8
    8.81    9    8.77    9    7.11    9    8.84    8
    8.33    11    9.26    11    7.81    11    8.47    8
    9.96    14    8.1    14    8.84    14    7.04    8
    7.24    6    6.13    6    6.08    6    5.25    8
    4.26    4    3.1    4    5.39    4    12.5    19
    10.84    12    9.13    12    8.15    12    5.56    8
    4.82    7    7.26    7    6.42    7    7.91    8
    5.68    5    4.74    5    5.73    5    6.89    8

    数据集如上,用sas读入后再做简单线性回归,四个回归的模型都一样,残差平方和,负相关系数也一样

    那么,是不是可以说这四组数据拟合的模型都正确呢?

    我们画出其各自的散点图,如下

    很明显,只有左上方的图才有用线性模型描述的可能性,其他的模型都不适合。

    OK~,这里是简单线性模型,只有一个自变量,如果上升到多个自变量时,无法用肉眼从图形判别的我们该做什么呢?

    这就是残差图大展身手的地方了(这里只选取残差和因变量进行作图)

    proc reg data=regbook.anscombefour;
            model y1= x1;
        plot r.*p.;
            model y2= x2;
        plot r.*p.;
            model y3= x3;
        plot r.*p.;
            model y1= x1;
        plot r.*p.;
    run; quit;

    因为在这里不清楚如何用sas组合四幅图,所以就没贴出来,如果是线性模型,那么残差应该符合正态分布的假设,所以残差应该围绕0上下无规律波动,如下(y1*x1的残差图)

    如果不是这种形状,就表明拟合的模型有问题,同理,残差和自变量在线性假设中也是独立的,也可以拿来进行检验。

  • 相关阅读:
    1.python的一些规范
    linux 命令总结
    【背包专题】D
    【算法入门竞赛经典】【7.2枚举排列】
    【练习赛补题】问题 E: 花生采摘 【模拟】
    【背包专题】B
    【背包专题】A
    【ACM对拍程序~】
    【背包专题】E
    河南省第七届大学生程序设计竞赛 问题 A: 物资调度【简单dfs】
  • 原文地址:https://www.cnblogs.com/yican/p/4198697.html
Copyright © 2011-2022 走看看