zoukankan      html  css  js  c++  java
  • 算法

    一、什么是算法?

    •  算法(Algorithm):一个计算过程,解决问题的方法

    一个算法应该具有以下七个重要的特征:

    • ①有穷性(Finiteness):算法的有穷性是指算法必须能在执行有限个步骤之后终止;
    • ②确切性(Definiteness):算法的每一步骤必须有确切的定义;
    • ③输入项(Input):一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输     入是指算法本身定出了初始条件;
    • ④输出项(Output):一个算法有一个或多个输出,以反映对输入数据加工后的结果。没       有输出的算法是毫无意义的;
    • ⑤可行性(Effectiveness):算法中执行的任何计算步骤都是可以被分解为基本的可执行       的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性);
    • ⑥高效性(High efficiency):执行速度快,占用资源少;
    • ⑦健壮性(Robustness):对数据响应正确。

    二、时间复杂度:参考链接

    1、时间复杂度举例说明

    时间复杂度:就是用来评估算法运行时间的一个式子(单位)。一般来说,时间复杂度高的算法比复杂度低的算法慢。

    类比生活中的一些时间,估计时间:

    现在我们来说说下面这些代码的时间复杂度是多少呢?

    复制代码
    print('hello world')
    print('hello python')
    print('hrllo ssd ')        #O(1)    大O,简而言之可以认为它的含义是“order of”(大约是)
    #
    for i in range(n):
        print('hello world')
        for j in range(n):
            print('hello world')   #O(n^2)
    
    for i in range(n):
        for j in range(i):
            print('hrllo owd')   ##O(n^2)
    n= 64
    while n>1:
        print(n)     #O(log2n)或者O(logn)
        n = n//2
    
    # while的分析思路:
    #     假如n = 64的时候会输出:如下图
    # 这时候可以发现规律:


    在n趋于无穷大的时候,任意两个不同底数的对数仅差一个常数。
    所以从研究算法的角度log的底数不重要。
    复制代码

    2、常见的算法时间复杂度(按照效率)由小到大依次为:

    Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<O(n2logn)< Ο(n3)<…<Ο(2^n)<Ο(n!)

    例如:

     

    由图中我们可以看出,当 n 趋于无穷大时, O(nlogn) 的性能显然要比 O(n^2) 来的高

    一般来说,只要算法中不存在循环语句,其时间复杂度就是 O(1)

    而时间复杂度又分为三种:

    • 最优时间复杂度 (Best-Case)
    • 平均时间复杂度 (Average-Case)
    • 最差时间复杂度 (Worst-Case)

    最差时间复杂度的分析给了一个在最坏情况下的时间复杂度情况,这往往比平均时间复杂度好计算,而最优时间复杂度一般没什么用,因为没人会拿一些特殊情况去评判这个算法的好坏。

    3、如何一眼判断时间复杂度?

    • 循环减半的过程-》O(logn)
    • 几次循环就是n的几次方的复杂度

    三、空间复杂度

    空间复杂度:用来评估算法内存占用大小的一个式子

     四、对于递归的简单复习

    1、递归最大的两个特点:

    • 调用自身
    • 结束条件

    2、做个小练习来判断一下下面那些函数是递归函数?

    3、递归练习1

    代码实现

    复制代码
    def fun(n):
        if n>0:
          print("抱着",end="")
          fun(n-1)
          print("的我",end="")
        else:
          print("我的小鲤鱼",end="")
    fun(4)
    复制代码

    递归练习2:汉诺塔问题

    解决思路:

    假设有n个盘子:

    • 1.把n-1个圆盘从A经过C移动到B
    • 2.把第n个圆盘从A移动到C
    • 3.把n-1个小圆盘从B经过A移动到C

     代码实现:

    复制代码
    def func(n,a,b,c):
        if n==1:
            print(a,'-->',c)
        else:
            func(n-1,a,c,b)  #将n-1个盘子从a经过c移动到b
            print(a,'-->',c)  #将剩余的最后一个盘子从a移动到c
            func(n-1,b,a,c)  #将n-1个盘子从b经过a移动到c
    n = int(input('请输入汉诺塔的层数:'))
    func(n,'柱子A','柱子B','柱子C')
    复制代码

     总结:汉诺塔移动次数的递推式:h(x)=2h(x-1)+1

  • 相关阅读:
    使用dbghelp生成dump文件以及事后调试分析
    Explain of Interaction Operators in UML?
    注册字体
    并发处理的5中模式
    Introduction to Parallel Computing
    Mac 下 PostgreSQL 的安装与使用
    struts配置请求后缀,将.action改为.do、.doaction_2015.01.04
    通过struts.xml搭建、为属性注入值_2015.01.04
    JSP 中 forward 和 redirect 的区别_2014.12.31
    Struts2的Action名称搜索顺序:2014.12.30
  • 原文地址:https://www.cnblogs.com/yidashi110/p/10498276.html
Copyright © 2011-2022 走看看