zoukankan      html  css  js  c++  java
  • 【树上莫队】【SP10707】 COT2

    Description

    给定一棵 (n) 个点的树,每个节点有一个权值,(m) 次询问,每次查询两点间路径上有多少不同的权值

    Input

    第一行是 (n)(m)

    第二行是 (n) 个整数描述点权

    下面 (n - 1) 行描述这棵树

    最后 (m) 行每行两个整数代表一次查询

    Output

    对每个查询输出一行一个整数代表答案

    Hint

    (1~leq~n~leq~40000,~1~leq~m~leq~10^5)。权值范围为 ([1,10^9])

    Solution

    这类数颜色题目,如果放到序列上那么妥妥的莫队,我们考虑放到树上该如何继续暴力莫队

    树上问题转化成序列问题一般都需要用到遍历序,这里借助于括号遍历序,即在每进入节点 (u) 的时候记录 (u) 的序号,在完全退出 (u) 及其子树的时候再记录一遍 (u) 的序号,这样一共会被记录两次。

    (st[u]) 为进入 (u) 时记录的位置对应下标,(ed[u]) 为退出时记录的位置对应下标。

    以下不妨设 (st[u]~<~st[v]),即先访问 (u) 再访问 (v)

    括号遍历序有一个良好的性质,对于两个点 (u)(v)(u)(v) 之间的链上的点在(st[u])(st[v]) 之间出现且仅出现一次。同时这个条件也是必要条件,于是我们可以利用这个性质只统计链上点的信息。

    考虑当 (u)(v) 的祖先时,直接处理括号遍历序上两点的信息就可以了。

    考虑当他们的 LCA 不为 (u) 的情况,我们发现 LCA 在括号遍历序中是没有出现过的,于是我们需要特判 LCA。另外注意到 (v) 不在 (u) 的子树中,所以 (u) 子树中的信息毫无左右,可以直接从统计 (ed[u])(st[v]) 的信息,而不是 (st[u])(st[v])

    注意 ST 求 LCA 用的是欧拉遍历序而不是括号序列,所以要记两个遍历序。

    Code

    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #ifdef ONLINE_JUDGE
    #define freopen(a, b, c)
    #endif
    
    typedef long long int ll;
    
    namespace IPT {
    	const int L = 1000000;
    	char buf[L], *front=buf, *end=buf;
    	char GetChar() {
    		if (front == end) {
    			end = buf + fread(front = buf, 1, L, stdin);
    			if (front == end) return -1;
    		}
    		return *(front++);
    	}
    }
    
    template <typename T>
    inline void qr(T &x) {
    	char ch = IPT::GetChar(), lst = ' ';
    	while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
    	while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
    	if (lst == '-') x = -x;
    }
    
    namespace OPT {
    	char buf[120];
    }
    
    template <typename T>
    inline void qw(T x, const char aft, const bool pt) {
    	if (x < 0) {x = -x, putchar('-');}
    	int top=0;
    	do {OPT::buf[++top] = static_cast<char>(x % 10 + '0');} while (x /= 10);
    	while (top) putchar(OPT::buf[top--]);
    	if (pt) putchar(aft);
    }
    
    const int maxn = 80010;
    const int maxm = 100010;
    
    struct Edge {
    	int to;
    	Edge *nxt;
    };
    Edge *hd[maxn];
    inline void cont(int from, int to) {
    	Edge *e = new Edge;
    	e->to = to; e->nxt = hd[from]; hd[from] = e;
    }
    
    int n, m, vistime, sn, cnt, etime;
    int dfn[maxn], st[maxn], ed[maxn], ST[18][maxn], deepth[maxn], belong[maxn], MU[maxn], bk[maxn], elur[maxn];
    bool vis[maxn];
    
    struct Ask {
    	int l, r, id, ans, lca;
    
    	inline bool operator<(const Ask &_others) const {
    		if (belong[this->l] != belong[_others.l]) return this->l < _others.l;
    		else if (belong[this->l] & 1) return this->r < _others.r;
    		else return this->r > _others.r;
    	}
    };
    Ask ask[maxm];
    
    void dfs(int);
    void MAKE_ST();
    int cmp(int, int);
    void update(int);
    void add(int);
    void dlt(int);
    int Get_Lca(int, int);
    void init_hash();
    bool qwq(const Ask&, const Ask&);
    
    int main() {
    	freopen("1.in", "r", stdin);
    	qr(n); qr(m);
    	for (int i = 1; i <= n; ++i) qr(MU[i]);
    	init_hash();
    	for (int i = 1, a, b; i < n; ++i) {
    		a = b = 0; qr(a); qr(b); cont(a, b); cont(b, a);
    	}
    	dfs(1); memset(vis, 0, sizeof vis);
    	MAKE_ST();
    	int sn = sqrt(vistime);
    	for (int i = 1; i <= vistime; ++i) belong[i] = i / sn;
    	for (int i = 1; i <= m; ++i) {
    		int &l = ask[i].l, &r = ask[i].r;
    		qr(l); qr(r); ask[i].id = i;
    		if (st[l] > st[r]) std::swap(l, r);
    		if (Get_Lca(l, r) == l) l = st[l], r = st[r];
    		else {
    			ask[i].lca = Get_Lca(l, r); l = ed[l]; r = st[r]; 
    		}
    	}
    	std::sort(ask + 1, ask + 1 + m); bk[0] = 1;
    	for (int i = 1, prel = ask[1].l, prer = prel - 1; i <= m; ++i) {
    		int l = ask[i].l, r = ask[i].r;
    		while (prel < l) update(dfn[prel++]);
    		while (prel > l) update(dfn[--prel]);
    		while (prer < r) update(dfn[++prer]);
    		while (prer > r) update(dfn[prer--]);
    		ask[i].ans = cnt; 
    		if (!bk[MU[ask[i].lca]]) ++ask[i].ans;
    	}
    	std::sort(ask + 1, ask + 1 + m, qwq);
    	for (int i = 1; i <= m; ++i) qw(ask[i].ans, '
    ', true);
    	return 0;
    }
    
    void dfs(int x) {
    	dfn[st[x] = ++vistime] = x;
    	elur[++etime] = x;
    	vis[x] = true;
    	for (Edge *e = hd[x]; e; e = e->nxt) if (!vis[e->to]) {
    		deepth[e->to] = deepth[x] + 1;
    		dfs(e->to); elur[++etime] = x;
    	}
    	dfn[ed[x] = ++vistime] = x;
    }
    
    void MAKE_ST() {
    	for (int i = 1; i <= vistime; ++i) ST[0][i] = elur[i];
    	for (int i = 1; i < 18; ++i) {
    		int di = i - 1;
    		for (int l = 1; l <= vistime; ++l) {
    			int r = l + (1 << i) - 1; if (r > vistime) break;
    			ST[i][l] = cmp(ST[di][l], ST[di][l + (1 << di)]);
    		}
    	}
    }
    
    inline int cmp(int x, int y) {
    	if (deepth[x] < deepth[y]) return x;
    	return y;
    }
    
    inline void add(int x) {
    	if ((bk[x]++) == 0) ++cnt;
    }
    
    inline void dlt(int x) {
    	if ((--bk[x]) == 0) --cnt;
    }
    
    void update(int x) {
    	if ((vis[x] ^= 1)) add(MU[x]);
    	else dlt(MU[x]);
    }
    
    int Get_Lca(int x, int y) {
    	int l = st[x], r = st[y];
    	int len = log2(r - l + 1);
    	return cmp(ST[len][l], ST[len][r - (1 << len) + 1]);
    }
    
    void init_hash() {
    	static int temp[maxn];
    	memcpy(temp, MU, (n + 1) * (sizeof(int)));
    	std::sort(temp + 1, temp + 1 + n);
    	int *ed = std::unique(temp + 1, temp + 1 + n);
    	for (int i = 1; i <= n; ++i) MU[i] = std::lower_bound(temp + 1, ed, MU[i]) - temp;
    }
    
    inline bool qwq(const Ask &_a, const Ask &_b) {
    	return _a.id < _b.id;
    }
    
  • 相关阅读:
    cart树剪枝
    LSA、LDA
    paddle中新增layer
    https://www.i5seo.com/
    打印机彩色打印设置(将彩色打印为黑色)
    办公文档的标准格式
    电脑常用的5个按键
    Win7各个版本之间的区别
    win7保护眼睛的颜色设置方法(85,125,205)
    详细教您台式电脑如何组装
  • 原文地址:https://www.cnblogs.com/yifusuyi/p/10423038.html
Copyright © 2011-2022 走看看