zoukankan      html  css  js  c++  java
  • 信息检索X科普一:查准与召回(Precision & Recall),F1 Measure

     好吧,其实我也不是IR专家,但是我喜欢IR,最近几年国内这方面研究的人挺多的,google和百度的强势,也说明了这个方向的价值。当然,如果你是学IR的,不用看我写的这些基础的东西咯。如果你是初学者或者是其他学科的,正想了解这些科普性质的知识,那么我这段时间要写的这个“信息检索X科普”系列也许可以帮助你。(我可能写的不是很快,见谅)

    至于为什么名字中间带一个字母X呢? 得意不告诉你...

    为什么先讲Precision和Recall呢?因为IR中很多算法的评估都用到Precision和Recall来评估好坏。所以我先讲什么是“好人”,再告诉你他是“好人”

    查准与召回(Precision & Recall)

    先看下面这张图来理解了,后面再具体分析。下面用P代表Precision,R代表Recall

    通俗的讲,Precision 就是检索出来的条目中(比如网页)有多少是准确的,Recall就是所有准确的条目有多少被检索出来了。

    下面这张图介绍True Positive,False Negative等常见的概念,P和R也往往和它们联系起来。

     

    我们当然希望检索的结果P越高越好,R也越高越好,但事实上这两者在某些情况下是矛盾的。比如极端情况下,我们只搜出了一个结果,且是准确的,那么P就是100%,但是R就很低;而如果我们把所有结果都返回,那么必然R是100%,但是P很低。

    因此在不同的场合中需要自己判断希望P比较高还是R比较高。如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析(我应该会在以后介绍)。

    F1  Measure

    前面已经讲了,P和R指标有的时候是矛盾的,那么有没有办法综合考虑他们呢?我想方法肯定是有很多的,最常见的方法应该就是F Measure了,有些地方也叫做F Score,都是一样的。

    F Measure是Precision和Recall加权调和平均:

    F = (a^2+1)P*R / a^2P +R

    当参数a=1时,就是最常见的F1了:

    F1 = 2P*R / (P+R)

    很容易理解,F1综合了P和R的结果。

     引用请注明:http://blog.csdn.net/xbinworld/article/details/6742095

    end

  • 相关阅读:
    Codeforces 1045C Hyperspace Highways (看题解) 圆方树
    Codeforces 316E3 线段树 + 斐波那切数列 (看题解)
    Codeforces 803G Periodic RMQ Problem 线段树
    Codeforces 420D Cup Trick 平衡树
    Codeforces 295E Yaroslav and Points 线段树
    Codeforces 196E Opening Portals MST (看题解)
    Codeforces 653F Paper task SA
    Codeforces 542A Place Your Ad Here
    python基础 异常与返回
    mongodb 删除
  • 原文地址:https://www.cnblogs.com/yihaha/p/7265356.html
Copyright © 2011-2022 走看看