zoukankan      html  css  js  c++  java
  • 浮点数的运算步骤

    浮点数的加减运算一般由以下五个步骤完成:对阶尾数运算规格化舍入处理溢出判断

    一、对阶

    所谓对阶是指将两个进行运算的浮点数的阶码对齐的操作。对阶的目的是为使两个浮点数的尾数能够进行加减运算。因为,当进行M x·2Ex与M y·2Ey加减运算时,只有使两浮点数的指数值部分相同,才能将相同的指数值作为公因数提出来,然后进行尾数的加减运算。对阶的具体方法是:首先求出两浮点数阶码的差,即⊿E=E x-E y,将小阶码加上⊿E,使之与大阶码相等,同时将小阶码对应的浮点数的尾数右移相应位数,以保证该浮点数的值不变。几点注意:

    (1)对阶的原则是小阶对大阶,之所以这样做是因为若大阶对小阶,则尾数的数值部分的高位需移出,而小阶对大阶移出的是尾数的数值部分的低位,这样损失的精度更小。

    (2)若⊿E=0,说明两浮点数的阶码已经相同,无需再做对阶操作了。

    (3)采用补码表示的尾数右移时,符号位保持不变。

    (4)由于尾数右移时是将最低位移出,会损失一定的精度,为减少误差,可先保留若干移出的位,供以后舍入处理用。

    二、尾数运算

    尾数运算就是进行完成对阶后的尾数相加减。这里采用的就是我们前面讲过的纯小数的定点数加减运算。

    三、结果规格化

    在机器中,为保证浮点数表示的唯一性,浮点数在机器中都是以规格化形式存储的。对于IEEE754标准的浮点数来说,就是尾数必须是1.M的形式。由于在进行上述两个定点小数的尾数相加减运算后,尾数有可能是非规格化形式,为此必须进行规格化操作。

    规格化操作包括左规和右规两种情况。

    左规操作:将尾数左移,同时阶码减值,直至尾数成为1.M的形式。例如,浮点数0.0011·25是非规格化的形式,需进行左规操作,将其尾数左移3位,同时阶码减3,就变成1.1100·22规格化形式了。

    右规操作:将尾数右移1位,同时阶码增1,便成为规格化的形式了。要注意的是,右规操作只需将尾数右移一位即可,这种情况出现在尾数的最高位(小数点前一位)运算时出现了进位,使尾数成为10.xxxx或11.xxxx的形式。例如,10.0011·25右规一位后便成为1.00011·26的规格化形式了。

    四、 舍入处理

    浮点运算在对阶或右规时,尾数需要右移,被右移出去的位会被丢掉,从而造成运算结果精度的损失。为了减少这种精度损失,可以将一定位数的移出位先保留起来,称为保护位,在规格化后用于舍入处理。

    IEEE754标准列出了四种可选的舍入处理方法:

    (1)就近舍入(round to nearest)这是标准列出的默认舍入方式,其含义相当于我们日常所说的“四舍五入”。例如,对于32位单精度浮点数来说,若超出可保存的23位的多余位大于等于100…01,则多余位的值超过了最低可表示位值的一半,这种情况下,舍入的方法是在尾数的最低有效位上加1;若多余位小于等于011…11,则直接舍去;若多余位为100…00,此时再判断尾数的最低有效位的值,若为0则直接舍去,若为1则再加1。

    (2)朝+∞舍入(round toward +∞)对正数来说,只要多余位不为全0,则向尾数最低有效位进1;对负数来说,则是简单地舍去。

    (3)朝-∞舍入(round toward -∞)与朝+∞舍入方法正好相反,对正数来说,只是简单地舍去;对负数来说,只要多余位不为全0,则向尾数最低有效位进1。

    (4)朝0舍入(round toward 0)

    即简单地截断舍去,而不管多余位是什么值。这种方法实现简单,但容易形成累积误差,且舍入处理后的值总是向下偏差。

    五、 溢出判断

    与定点数运算不同的是,浮点数的溢出是以其运算结果的阶码的值是否产生溢出来判断的。若阶码的值超过了阶码所能表示的最大正数,则为上溢,进一步,若此时浮点数为正数,则为正上溢,记为+∞,若浮点数为负数,则为负上溢,记为-∞;若阶码的值超过了阶码所能表示的最小负数,则为下溢,进一步,若此时浮点数为正数,则为正下溢,若浮点数为负数,则为负下溢。正下溢和负下溢都作为0处理。

    要注意的是,浮点数的表示范围和补码表示的定点数的表示范围是有所不同的,定点数的表示范围是连续的,而浮点数的表示范围可能是不连续的。

    六、例子

    float a=0.3;b=1.6;

    a=(0.3)10=(0011 1110 1001 1001 1001 1001 1001 1010)2    Sa=0    Ea=011 1110 1    Ma=1.001 1001 1001 1001 1001 1010

    b=(1.6)10=(0011 1111 1100 1100 1100 1100 1100 1101)2      Sb=0    Eb=011 1111 1     Mb=1.100 1100 1100 1100 1100 1101

    a+b=?

    第一步:对阶

    ∵ Ea<Eb   Eb-Ea=2

    ∴ Ma要调整为 0.0 1001 1001 1001 1001 1001 10       10

       E=011 1111 1

    第二步:尾数运算

        0.01001100110011001100110

    +  1.10011001100110011001101

        1.11100110011001100110011‬

    第三步:规格化

    1.11100110011001100110011‬已经是个规格化数据了

    第四步:舍入处理

    由于在对阶时,Ma有右移,且第一次最高为1,第二次为0,所以按"0舍1入",尾数运算结果调整为 1.11100110011001100110100

    第五步:溢出判断

    没有溢出,阶码不调整,所以最后的结果为

    a+b=(0  01111111  11100110011001100110100)2=(0011 1111 1111 0011 0011 0011 0011 0100)2=(3FF33334)16

    转为10进制

    a+b=1.90000010

    b-a=?

    第一步:对阶

    跟上面加法一样

    第二步:尾数运算

       1.10011001100110011001101           

    -  0.01001100110011001100110

       1.01001100110011001100111

    第三步:规格化

    1.01001100110011001100111已经是个规格化数据了

    第四步:舍入处理

    由于在对阶时,Ma有右移,且第一次最高为1,第二次为0,所以按"0舍1入",尾数运算结果调整为 1.01001100110011001100110

    第五步:溢出判断

    没有溢出,阶码不调整,所以最后的结果为

    a-b=(0  01111111  01001100110011001100110)2=(0011  1111  1010  0110  0110  0110  0110  0110)2=(3FA66666)16

    转为10进制

    a-b=1.29999995

    付:浮点运算加法器逻辑电路

  • 相关阅读:
    2020暑假项目-车辆派遣管理系统需求
    2020暑假项目-车辆派遣管理系统
    关于页面刷新或者调用方法事获取不到元素信息或者出现缺少对象错误的换位思考setTimeout的使用
    JSON 传值 textarea中虚拟换行功能
    我的MYSQL学习心得(十) 自定义存储过程和函数
    我的MYSQL学习心得(九) 索引
    我的MYSQL学习心得(八) 插入 更新 删除
    我的MYSQL学习心得(六) 函数
    我的MYSQL学习心得(七) 查询
    我的MYSQL学习心得(四) 数据类型
  • 原文地址:https://www.cnblogs.com/yilang/p/11277201.html
Copyright © 2011-2022 走看看