zoukankan      html  css  js  c++  java
  • HDU 2669 Romantic

    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u
     

    Description

    The Sky is Sprite.
    The Birds is Fly in the Sky.
    The Wind is Wonderful.
    Blew Throw the Trees
    Trees are Shaking, Leaves are Falling.
    Lovers Walk passing, and so are You.
    ................................Write in English class by yifenfei



    Girls are clever and bright. In HDU every girl like math. Every girl like to solve math problem!
    Now tell you two nonnegative integer a and b. Find the nonnegative integer X and integer Y to satisfy X*a + Y*b = 1. If no such answer print "sorry" instead.
     

    Input

    The input contains multiple test cases.
    Each case two nonnegative integer a,b (0<a, b<=2^31)
     

    Output

    output nonnegative integer X and integer Y, if there are more answers than the X smaller one will be choosed. If no answer put "sorry" instead.
     

    Sample Input

    77 51
    10 44
    34 79
     

    Sample Output

    2 -3
    sorry
    7 -3

    程序分析:

    题中大意就是只需要求解a*x+b*y=1,a和b互质gcd(a,b)=1,这是基础情况,先想办法求解这个方程(a,b已知,x,y未知),把这个题目理解了再去求变形一点点的情况a*x+b*y=n,n是gcd(a,b)的倍数,n也可能不是1。被这个题坑死了,开始没有想到欧几里德算法,虽然案例是过了,但是一提交就是WA。之后参考了别人的代码才知道原来方法都用错了。。。

    程度代码:

    #include<iostream>   
    #include<cstdio>   
    using namespace std;  
    int ext_gcd(int a,int b,int &x,int &y){  
        if(b==0){  
            x=1;y=0; return a;  
        }  
        int d=ext_gcd(b,a%b,x,y);  
        int xt=x;  
        x=y;  
        y=xt-a/b*y;  
        return d;  
    }  
    int main(){  
        int a,b;  
        while(scanf("%d%d",&a,&b)==2){  
            int x,y;  
            int d=ext_gcd(a,b,x,y);  
            if(d!=1)  
                printf("sorry
    ");  
            else{  
                int tx;  
                tx=x;  
                x=(x%b+b)%b;  
                y=y-(x-tx)/b*a;  
                printf("%d %d
    ",x,y);  
            }  
        }  
        return 0;  
    }  
  • 相关阅读:
    BZOJ 2154 Crash的数字表格 【莫比乌斯反演】
    BZOJ 3529 [Sdoi2014]数表 【莫比乌斯反演】
    BZOJ 2820 YY的GCD 【莫比乌斯反演】
    BZOJ 2440 [中山市选2011]完全平方数 【莫比乌斯反演】
    [BalticOI 2004] Sequence
    AtCoder [ARC070E] NarrowRectangles
    AtCoder [AGC022E] Median Replace
    AtCoder [ARC101E] Ribbons on Tree
    CF107D Crime Management
    Loj 6497「雅礼集训 2018 Day1」图
  • 原文地址:https://www.cnblogs.com/yilihua/p/4744313.html
Copyright © 2011-2022 走看看